Stiffness signatures along early stages of Xylella fastidiosa biofilm formation.

Colloids Surf B Biointerfaces

Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil.

Published: November 2017

The pathogenicity of Xylella fastidiosa is associated with its systematic colonization of the plant xylem, forming bacterial biofilms. Mechanisms of bacterial transport among different xylem vessels, however, are not completely understood yet, but are strongly influenced by the presence of extracellular polymeric substances (EPS), which surrounds the assembly of cells forming the biofilm. In this work, we show quantitative measurements on the elastic properties of the system composed by EPS and bacterial cell. In order to investigate the mechanical properties of this system, force spectroscopy and confocal Raman measurements were carried out during Xylella fastidiosa subsp. pauca initial stages of adhesion and cluster formation. We show that stiffness progressively decreases with increasing culture growth time, from two to five days. For early adhesion samples, stiffness values are quite different at the bacterial polar and body regions. Lower stiffness values at the cell pole suggest a flexible mechanical response at this region, associated with first cell adhesion to a surface. These results correlate very well with our observations of cell motion within microchannels, under conditions simulating xylem flow. Both the oscillatory movement of vertically attached single cells, as well as the transport of cell clusters within the biofilm matrix can be explained by the presence of softer materials at the cell pole and EPS matrix. Our results may thus add to a more detailed understanding of mechanisms used by cells to migrate among vessels in plant xylem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2017.07.075DOI Listing

Publication Analysis

Top Keywords

xylella fastidiosa
12
plant xylem
8
properties system
8
stiffness values
8
cell pole
8
cell
6
stiffness
4
stiffness signatures
4
signatures early
4
early stages
4

Similar Publications

subsp. (), a quarantine pathogen in the European Union, severely threatens Mediterranean olive production, especially in southern Italy, where Olive Quick Decline Syndrome (OQDS) has devastated Apulian olive groves. This study addresses the urgent need to identify resistant olive genotypes by monitoring 16 potentially tolerant genotypes over six years, assessing symptom severity and bacterial load.

View Article and Find Full Text PDF

DNA can be readily amplified through replication, enabling the detection of a single-target copy. A comparable performance for proteins in immunoassays has yet to be fully assessed. Surface-plasmon-resonance (SPR) serves as a probe capable of performing assays at concentrations typically around 10⁻⁹ molar.

View Article and Find Full Text PDF

A ground-breaking graphene-based biosensor designed for label-free detection of immunoglobulin M (IgM) achieving a remarkable concentration of 100 zeptomolar (10 m), is reported. The sensor is a two-terminal device and incorporates a millimeter-wide gold interface, bio-functionalized with ≈10 anti-IgM antibodies and capacitively coupled to a bare graphene electrode through a water-soaked paper strip. In this configuration, few affinity binding events trigger a collective electrostatic reorganization of the protein layer, leading to an extended surface potential (SP) shift of the biofunctionalized Au surface.

View Article and Find Full Text PDF

Leuconostoc mesenteroides strain MS4-derived bacteriocins: A potent antimicrobial arsenal for controlling Xylella fastidiosa infection.

Microbiol Res

January 2025

International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, Valenzano, Bari 70010, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Piazzale Enrico Fermi, 1, Portici, Naples 80055, Italy. Electronic address:

Xylella fastidiosa subsp. pauca (Xfp) currently presents a serious threat to agriculture in Europe and in the Mediterranean, following its discovery in several countries. Addressing this bacterial plant disease with traditional agricultural practices and management strategies has proven inadequate, highlighting the urgent need for effective and environmentally safe antibacterial solutions.

View Article and Find Full Text PDF

is an aerobic, Gram-negative bacterium that is responsible for many plant diseases. The bacterium is the causal agent of Pierce's disease in grapes and is also responsible for citrus variegated chlorosis, peach phony disease, olive quick decline syndrome and leaf scorches of various species. The production of biofilm is intrinsically linked with persistence and transmission in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!