Cells of the immune system are derived from hematopoietic stem cells (HSCs) residing in the bone marrow. HSCs become activated in response to stress, such as acute infections, which adapt the bone marrow output to the needs of the immune response. However, the impact of infection-adapted HSC activation and differentiation on the persistence of chronic infections is poorly understood. We have examined here the bone marrow outcome of chronic visceral leishmaniasis and show that the parasite Leishmania donovani induces HSC expansion and skews their differentiation towards non-classical myeloid progenitors with a regulatory phenotype. Our results further suggest that emergency hematopoiesis contributes to the pathogenesis of visceral leishmaniasis, as decreased HSC expansion results in a lower parasite burden. Conversely, monocytes derived in the presence of soluble factors from the infected bone marrow environment are more permissive to infection by Leishmania. Our results demonstrate that L. donovani is able to subvert host bone marrow emergency responses to facilitate parasite persistence, and put forward hematopoiesis as a novel therapeutic target in chronic infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560750 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1006422 | DOI Listing |
J Clin Invest
January 2025
Department of Medicine, University of California San Francisco, San Francisco, United States of America.
Hypoxia is a major cause of pulmonary hypertension (PH) worldwide, and it is likely that interstitial pulmonary macrophages contribute to this vascular pathology. We observed in hypoxia-exposed mice an increase in resident interstitial macrophages, which expanded through proliferation and expressed the monocyte recruitment ligand CCL2. We also observed an increase in CCR2+ macrophages through recruitment, which express the protein thrombospondin-1 that functionally activates TGF-beta to cause vascular disease.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
January 2025
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
Β-thalassemia is one of the global health burdens. The CD41-42 (-TCTT) mutation at HBB is the most prevalent pathogenic mutation of β-thalassemia in both China and Southeast Asia. Previous studies focused on repairing the HBB CD41-42 (-TCTT) mutation in β-thalassemia patient-specific induced pluripotent stem cells, which were subsequently differentiated into hematopoietic stem and progenitor cells (HSPCs) for transplantation.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
December 2023
Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Ribosome profiling has revolutionized our understanding of gene expression regulation by providing a snapshot of global translation in vivo. This powerful technique enables the investigation of the dynamics of translation initiation, elongation, and termination, and has provided insights into the regulation of protein synthesis under various conditions. Despite its widespread adoption, challenges persist in obtaining high-quality ribosome profiling data.
View Article and Find Full Text PDFLupus
January 2025
Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
Background: Systemic lupus erythematosus is a common autoimmune disease. Studies have suggested that defective stem cells could be involved in the pathogenesis of systemic lupus erythematosus, which leads to changes in the function of immune cells. By observing the cell morphology, autophagy, and senescence of bone marrow mesenchymal stem cells (BMSCs) from lupus mice and normal controls, this study investigated the role of IL-6 in autophagy and senescence of BMSCs and explored relevant mechanisms.
View Article and Find Full Text PDFHematology
December 2025
Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
Objective: To evaluate the short-term efficacy and safety of eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria (PNH) in China.
Method: Data were retrospectively collected from patients with PNH who received at least 3 months of full-dose eculizumab. Changes in clinical and laboratory indicators after 1, 3, and 6 months of eculizumab therapy and at the end of follow-up were documented.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!