Free energy perturbation theory, in combination with enhanced sampling of protein-ligand binding modes, is evaluated in the context of fragment-based drug design, and used to design two new small-molecule inhibitors of the Aurora A kinase-TPX2 protein-protein interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591577PMC
http://dx.doi.org/10.1039/c7cc05379gDOI Listing

Publication Analysis

Top Keywords

small-molecule inhibitors
8
inhibitors aurora
8
aurora kinase-tpx2
8
kinase-tpx2 protein-protein
8
protein-protein interaction
8
computationally-guided optimization
4
optimization small-molecule
4
interaction free
4
free energy
4
energy perturbation
4

Similar Publications

Rare dual MYH9-ROS1 fusion variants in a patient with lung adenocarcinoma: A case report.

Medicine (Baltimore)

January 2025

Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.

Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.

View Article and Find Full Text PDF

The infiltrative and diffuse nature of gliomas makes complete resection unfeasible. Unfortunately, regions of brain parenchyma with residual, infiltrative tumor are protected by the blood-brain barrier (BBB), making systemic chemotherapies, small-molecule inhibitors, and immunotherapies of limited efficacy. Low-frequency focused ultrasound (FUS) in combination with intravascular microbubbles can be used to disrupt the BBB transiently and selectively within the tumor and peritumoral region.

View Article and Find Full Text PDF

Targeting Protein-Protein Interactions in Hematologic Malignancies.

Annu Rev Pathol

January 2025

Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; email:

Over the last two decades, there have been extensive efforts to develop small-molecule inhibitors of protein-protein interactions (PPIs) as novel therapeutics for cancer, including hematologic malignancies. Despite the numerous challenges associated with developing PPI inhibitors, a significant number of them have advanced to clinical studies in hematologic patients in recent years. The US Food and Drug Administration approval of the very first PPI inhibitor, venetoclax, demonstrated the real clinical value of blocking protein-protein interfaces.

View Article and Find Full Text PDF

The main protease (Mpro) of SARS-CoV-2 is an evolutionarily conserved drug discovery target. The present study mainly focused on chemoinformatics computational methods to investigate the efficacy of our newly designed trifluoromethyl-1,3,4-oxadiazole amide derivatives as SARS-CoV-2 Mpro inhibitors. Drug-likeness ADMET analysis, molecular docking simulation, density functional theory (DFT) and molecular dynamics simulation methods were included.

View Article and Find Full Text PDF

Background: Talabostat, an oral small molecule inhibitor of dipeptidyl peptidases (DPP4 and DPP8/9), has shown synergistic activity with immune checkpoint inhibitors in preclinical studies. This open label, phase 2 basket trial assessed the antitumor activity of combining talabostat and pembrolizumab (anti-programmed death-1 antibody) in advanced solid tumor patients.

Methods: The primary objective was assessment of dose-limiting toxicity (DLT) rates in the first six patients (lead-in stage) and response rate (efficacy stage; included cohort A [checkpoint inhibitor (ICI) naive] and cohort B [ICI pretreated]) for the study treatment using the Response Evaluation Criteria in Solid Tumors (RECIST) v1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!