Introduction: One of the main reasons for disease recurrence in the curative breast cancer treatment setting is the development of drug resistance. Microtubule targeted agents (MTAs) are among the most commonly used drugs for the treatment of breaset cancer and therefore overcoming taxane resistance is of primary clinical importance. Our group has previously demonstrated that the microtubule dynamics of docetaxel-resistant MCF-7TXT cells are insensitivity to docetaxel due to the distinct expression profiles of β-tubulin isotypes in addition to the high expression of p-glycoprotein (ABCB1). In the present investigation we examined whether taxane-resistant breast cancer cells are more sensitive to microtubule destabilizing agents including vinca alkaloids and colchicine-site binding agents (CSBAs) than the non-resistant cells.

Methods: Two isogenic MCF-7 breast cancer cell lines were selected for resistance to docetaxel (MCF-7TXT) and the wild type parental cell line (MCF-7CC) to examine if taxane-resistant breast cancer cells are sensitive to microtubule-destabilizing agents including vinca alkaloids and CSBAs. Cytotoxicity assays, immunoblotting, indirect immunofluorescence and live imaging were used to study drug resistance, apoptosis, mitotic arrest, microtubule formation, and microtubule dynamics.

Results: MCF-7TXT cells were demonstrated to be cross resistant to vinca alkaloids, but were more sensitive to treatment with colchicine compared to parental non-resistant MCF-7CC cells. Cytotoxicity assays indicated that the IC50 of MCF-7TXT cell to vinorelbine and vinblastine was more than 6 and 3 times higher, respectively, than that of MCF-7CC cells. By contrast, the IC50 of MCF-7TXT cell for colchincine was 4 times lower than that of MCF-7CC cells. Indirect immunofluorescence showed that all MTAs induced the disorganization of microtubules and the chromatin morphology and interestingly each with a unique pattern. In terms of microtubule and chromain morphology, MCF-7TXT cells were more resistant to vinorelbine and vinblastine, but more sensitive to colchicine compared to MCF-7CC cells. PARP cleavage assay further demonstrated that all of the MTAs induced apoptosis of the MCF-7 cells. However, again, MCF-7TXT cells were more resistant to vinorelbine and vinblastine, and more sensitive to colchicine compared to MCF-7CC cells. Live imaging demonstrated that the microtubule dynamics of MCF-7TXT cells were less sensitive to vinca alkaloids, and more sensitive to colchicine. MCF-7TXT cells were also noted to be more sensitive to other CSBAs including 2MeOE2, ABT-751 and phosphorylated combretastatin A-4 (CA-4P).

Conclusion: Docetaxel-resistant MCF-7TXT cells have demonstrated cross-resistance to vinca alkaloids, but appear to be more sensitive to CSBAs (colchicine, 2MeOE2, ABT-751 and CA-4P) compared to non-resistant MCF-7CC cells. Taken together these results suggest that CSBAs should be evaluated further in the treatment of taxane resistant breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546696PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182400PLOS

Publication Analysis

Top Keywords

mcf-7txt cells
28
breast cancer
24
vinca alkaloids
24
mcf-7cc cells
24
cells
17
cells sensitive
16
cancer cells
12
agents including
12
including vinca
12
colchicine compared
12

Similar Publications

Introduction: One of the main reasons for disease recurrence in the curative breast cancer treatment setting is the development of drug resistance. Microtubule targeted agents (MTAs) are among the most commonly used drugs for the treatment of breaset cancer and therefore overcoming taxane resistance is of primary clinical importance. Our group has previously demonstrated that the microtubule dynamics of docetaxel-resistant MCF-7TXT cells are insensitivity to docetaxel due to the distinct expression profiles of β-tubulin isotypes in addition to the high expression of p-glycoprotein (ABCB1).

View Article and Find Full Text PDF

Live Imaging to Study Microtubule Dynamic Instability in Taxane-resistant Breast Cancers.

J Vis Exp

February 2017

Department of Medical Genetics, Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta;

Taxanes such as docetaxel belong to a group of microtubule-targeting agents (MTAs) that are commonly relied upon to treat cancer. However, taxane resistance in cancerous cells drastically reduces the effectiveness of the drugs' long-term usage. Accumulated evidence suggests that the mechanisms underlying taxane resistance include both general mechanisms, such as the development of multidrug resistance due to the overexpression of drug-efflux proteins, and taxane-specific mechanisms, such as those that involve microtubule dynamics.

View Article and Find Full Text PDF

Background: Chemoresistance is a major factor involved in a poor response and reduced overall survival in patients with advanced breast cancer. Although extensive studies have been carried out to understand the mechanisms of chemoresistance, many questions remain unanswered.

Methods: In this research, we used two isogenic MCF-7 breast cancer cell lines selected for resistance to doxorubicin (MCF-7DOX) or docetaxel (MCF-7TXT) and the wild type parental cell line (MCF-7CC) to study mechanisms underlying acquired resistance to taxanes in MCF-7TXT cells.

View Article and Find Full Text PDF

Drug transporters have been implicated in resistance of solid and non-solid tumors to a variety of chemotherapeutic agents. Higher expression of the ABCB1 drug transporter is often observed in drug-resistant tumor cells, although the precise mechanism remains unclear. During selection of MCF-7 cells for survival in increasing concentrations of docetaxel (MCF-7TXT cells), we observed in this study a temporal correlation between the acquisition of docetaxel resistance at selection dose 9 and the increased expression of ABCB1.

View Article and Find Full Text PDF

Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance.

BMC Cancer

November 2008

Regional Cancer Program, Sudbury Regional Hospital, and Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON Canada.

Background: Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!