Objective: The aim of this study was to investigate the effects of single-scan and scan-pair intensity inhomogeneity correction methods on the repeatability of voxel-based morphometry (VBM) using images acquired with multiple magnetic resonance (MR) scanners.

Methods: Three-dimensional T1-weighed MR images of the brain were obtained from 22 healthy participants using each of 5 MR scanners, yielding 110 images (5 scanners × 22 subjects) in total. Six patterns of intensity inhomogeneity corrections (no correction, single-scan corrections, and scan-pair correction, and their combinations) were applied in the VBM procedure to investigate the effect of the corrections on the repeatability of gray and white matter volume measurements.

Results: Single-scan and scan-pair intensity inhomogeneity corrections significantly reduced the variance in spatially normalized gray and white matter volumes. However, combining the 2 methods did not significantly improve the repeatability when evaluated as whole brain.

Conclusions: Single-scan and scan-pair intensity inhomogeneity corrections improved the repeatability of gray and white matter volumes obtained by multiple MR scanners and assessed by VBM.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RCT.0000000000000657DOI Listing

Publication Analysis

Top Keywords

intensity inhomogeneity
20
single-scan scan-pair
16
scan-pair intensity
16
inhomogeneity corrections
12
gray white
12
white matter
12
inhomogeneity correction
8
correction methods
8
methods repeatability
8
repeatability voxel-based
8

Similar Publications

High Field MRI in Parotid Gland Tumors: A Diagnostic Algorithm.

Cancers (Basel)

December 2024

Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy.

Imaging of parotid tumors is crucial for surgery planning, but it cannot distinguish malignant from benign lesions with absolute reliability. The aim of the study was to establish a diagnostic MRI algorithm to differentiate parotid tumors. A retrospective study was conducted including all patients with parotid tumors, who underwent 3T-MRI and surgery.

View Article and Find Full Text PDF

Image segmentation is a crucial task in artificial intelligence fields such as computer vision and medical imaging. While convolutional neural networks (CNNs) have achieved notable success by learning representative features from large datasets, they often lack geometric priors and global object information, limiting their accuracy in complex scenarios. Variational methods like active contours provide geometric priors and theoretical interpretability but require manual initialization and are sensitive to hyper-parameters.

View Article and Find Full Text PDF

Perovskite/silicon tandem solar cells (TSCs) are promising candidates for commercialization due to their outstanding power conversion efficiencies (PCEs). However, controlling the crystallization process and alleviating the phases/composition inhomogeneity represent a considerable challenge for perovskite layers grown on rough silicon substrates, ultimately limiting the efficiency and stability of TSC. Here, this study reports a "halide locking" strategy that simultaneously modulates the nucleation and crystal growth process of wide bandgap perovskites by introducing a multifunctional ammonium salt, thioacetylacetamide hydrochloride (TAACl), to bind with all types of cations and anions in the mixed halide perovskite precursor.

View Article and Find Full Text PDF

Aim: To study the dosimetric behavior of dose computational algorithms in inhomogeneous medium using CMS XiO and MONACO treatment planning system (TPS) for 4 megavoltage (MV), 6 MV and 15 MV photon beam energies.

Material And Methods: Styrofoam blocks of thickness 1.90 cm, 3.

View Article and Find Full Text PDF

Tightly confined plasmons in metal nanogaps are highly sensitive to surface inhomogeneities and defects due to the nanoscale optical confinement, but tracking and monitoring their location is hard. Here, we probe a 1-D extended nanocavity using a plasmonic silver nanowire (AgNW) on mirror geometry. Morphological changes inside the nanocavity are induced locally using optical excitation and probed locally through simultaneous measurements of surface enhanced Raman scattering (SERS) and dark-field spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!