We propose a new approach to developing of graded-index chalcogenide fibers. Since chalcogenide glasses are incompatible with current vapor deposition techniques, the arbitrary refractive index gradient is obtained by means of core nanostructurization by the effective medium approach. We study the influence of graded-index core profile and the core diameter on the fiber dispersion characteristics. Flat, normal dispersion profiles across the mid-infrared transmission window of the assumed glasses are easily obtained for the investigated core nanostructure layouts. Nonlinear propagation simulations enable to expect 3.5-8.5 µm spectrum of coherent, pulse preserving supercontinuum. Fabrication feasibility of the proposed fiber is also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.012984DOI Listing

Publication Analysis

Top Keywords

graded-index core
8
core
5
nanostructured graded-index
4
core chalcogenide
4
chalcogenide fiber
4
fiber all-normal
4
all-normal dispersion-design
4
dispersion-design nonlinear
4
nonlinear simulations
4
simulations propose
4

Similar Publications

Article Synopsis
  • This study examines how the shape factor (k) influences the mode properties of graded-index ring-core fibers (GIRCF), specifically focusing on a design with 50 mol% Ge-doping and a shape factor of 2.
  • The research demonstrates that this GIRCF configuration can produce supercontinuum light with orbital angular momentum (OAM) modes, featuring a flat dispersion with slight variations over a wide wavelength range of 750 to 3055 nm.
  • The introduction of a graded refractive index profile (RIP) enhances ring-core fiber design by promoting flat dispersion, minimizing spin-orbit coupling, and enabling better mode purity and broader spectral coverage.
View Article and Find Full Text PDF

We simulate the optical properties of polymer optical waveguides with different refractive index profiles in their cores as coupling components (edge couplers) between single-mode fiber and SiOx waveguides. In this paper, we focus on the single-mode operation of graded-index (GI) core polymer waveguides, for which we previously demonstrated low propagation loss under multimode operation. We design the optimum core structure (size and index contrast) for different refractive index profiles, and then demonstrate the unique optical properties of GI waveguides contributing to the low optical loss compared to the step-index counterparts, in particular, mode field diameter variation and taper angle tolerance.

View Article and Find Full Text PDF

We present a low-loss, compact, hollow core optical fibre (HCF) cell integrated with single mode fibre (SMF). The cell is designed to be filled with atomic vapour and used as a component in photonic quantum technologies, with applications in quantum memory and optical switching. We achieve a total insertion loss of 0.

View Article and Find Full Text PDF

We report the generation of a broadband supercontinuum (SC) from 790 to 2900 nm in a tellurite graded-index (GRIN) multimode fiber with a nanostructured core. We study the SC dynamics in different dispersion regimes and observe near-single-mode spatial intensity distribution at high input energy values. Numerical simulations of the (3 + 1)D generalized nonlinear Schrödinger equation are in good agreement with our experiments.

View Article and Find Full Text PDF

The fulfilment of the adiabatic criterion is indispensable for the realization of a low-loss photonic lantern (PL), concurrently imposing a stringent restriction on the taper transition length of the PL. Here, by relaxing the adiabatic criterion, a low-loss and compact PL based on a step-index double cladding fiber (SI-DCF) is theoretically proposed and experimentally demonstrated. The use of SI-DCF can reduce the mode field diameter (MFD) expansion ratio during the tapering processing and greatly decrease the taper transition length required for adiabatic tapering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!