Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dielectric multilayer coatings exhibiting steep reflectance in an extremely narrow transition zone, highly sensitive to any variations of layer refractive indices and therefore suitable for studying the nonlinear properties are produced and characterized. Increase of reflectance at growing intensity reveals the presence of the optical Kerr effect. A new method calculating intensity dependent spectral characteristics of multilayer optical coatings in the case of nonlinear interaction with high intensity laser pulses is developed. The method is based on the numerical solution of a boundary-value problem derived from the system of Maxwell equations describing the propagation of light through a multilayer system. The method opens a way to synthesis of optical coatings with predictable nonlinear properties. Comparison of our numerical modelling with experimental data enabled us to accurately determine the Kerr coefficients n of the widely-used thin-film materials TaO and NbO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.25.012675 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!