The development of wearable and large-area energy-harvesting textiles has received intensive attention due to their promising applications in next-generation wearable functional electronics. However, the limited power outputs of conventional textiles have largely hindered their development. Here, in combination with the stainless steel/polyester fiber blended yarn, the polydimethylsiloxane-coated energy-harvesting yarn, and nonconductive binding yarn, a high-power-output textile triboelectric nanogenerator (TENG) with 3D orthogonal woven structure is developed for effective biomechanical energy harvesting and active motion signal tracking. Based on the advanced 3D structural design, the maximum peak power density of 3D textile can reach 263.36 mW m under the tapping frequency of 3 Hz, which is several times more than that of conventional 2D textile TENGs. Besides, its collected power is capable of lighting up a warning indicator, sustainably charging a commercial capacitor, and powering a smart watch. The 3D textile TENG can also be used as a self-powered active motion sensor to constantly monitor the movement signals of human body. Furthermore, a smart dancing blanket is designed to simultaneously convert biomechanical energy and perceive body movement. This work provides a new direction for multifunctional self-powered textiles with potential applications in wearable electronics, home security, and personalized healthcare.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201702648DOI Listing

Publication Analysis

Top Keywords

biomechanical energy
12
active motion
12
orthogonal woven
8
triboelectric nanogenerator
8
effective biomechanical
8
energy harvesting
8
self-powered active
8
woven triboelectric
4
nanogenerator effective
4
harvesting self-powered
4

Similar Publications

Biomechanical effects of human-mobility aid interaction: A narrative review.

Gait Posture

January 2025

School of Engineering Medicine, Beihang University, Beijing, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China. Electronic address:

Background: The clinical benefits and widespread use of traditional mobility aids (such as canes, walking frames, wheeled walkers, etc.) have been hampered by improper use, fear of falling, and social stigma. Clarifying the biomechanical impacts of using mobility aids on users is fundamental to optimizing rehabilitation programs.

View Article and Find Full Text PDF

Lower-limb exoskeletons have demonstrated great potential for gait rehabilitation in individuals with motor impairments; however, maintaining human-exoskeleton coordination remains a challenge. The coordination problem, referred to as any mismatch or asynchrony between the user's intended trajectories and exoskeleton desired trajectories, leads to sub-optimal gait performance, particularly for individuals with residual motor ability. Here, we investigate the virtual energy regulator (VER)'s ability to generate coordinated locomotion in lower limb exoskeleton.

View Article and Find Full Text PDF

In vitro stretch modulates mitochondrial dynamics and energy metabolism to induce smooth muscle differentiation in mesenchymal stem cells.

FASEB J

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

The smooth muscle cells (SMCs) located in the vascular media layer are continuously subjected to cyclic stretching perpendicular to the vessel wall and play a crucial role in vascular wall remodeling and blood pressure regulation. Mesenchymal stem cells (MSCs) are promising tools to differentiate into SMCs. Mechanical stretch loading offers an opportunity to guide the MSC-SMC differentiation and mechanical adaption for function regeneration of blood vessels.

View Article and Find Full Text PDF

Piezoelectric Vitamin-Based Self-Assemblies for Energy Generation.

Adv Mater

January 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.

Structural diversity of biomolecules leads to various supramolecular organizations and asymmetric architectures of self-assemblies with significant piezoelectric response. However, the piezoelectricity of biomolecular self-assemblies has not been fully explored and the relationship between supramolecular structures and piezoelectricity remains poorly understood, which hinders the development of piezoelectric biomaterials. Herein, for the first time, the piezoelectricity of vitamin-based self-assemblies for power generation is systematically explored.

View Article and Find Full Text PDF

Many swimmers, especially small- to medium-sized animals, use intermittent locomotion that differs from continuous swimming of large species. This type of locomotion, called burst and coast, is often associated with an energetic advantage. In this work, we investigate the intermittent locomotion inspired by fish locomotion but applied to a propeller.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!