A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

KCa3.1 Channels and Glioblastoma: In Vitro Studies. | LitMetric

KCa3.1 Channels and Glioblastoma: In Vitro Studies.

Curr Neuropharmacol

Department of Radiation Oncology, University of Tubingen, Tubingen, Germany.

Published: September 2018

Background: Several tumor entities including brain tumors aberrantly overexpress intermediate conductance Ca2+ activated KCa3.1 K+ channels. These channels contribute significantly to the transformed phenotype of the tumor cells.

Method: PubMed was searched in order to summarize our current knowledge on the molecular signaling upstream and downstream and the effector functions of KCa3.1 channel activity in tumor cells in general and in glioblastoma cells in particular. In addition, KCa3.1 expression and function for repair of DNA double strand breaks was determined experimentally in primary glioblastoma cultures in dependence on the abundance of proneural and mesenchymal stem cell markers.

Results: By modulating membrane potential, cell volume, Ca2+ signals and the respiratory chain, KCa3.1 channels in both, plasma and inner mitochondrial membrane, have been demonstrated to regulate many cellular processes such as migration and tissue invasion, metastasis, cell cycle progression, oxygen consumption and metabolism, DNA damage response and cell death of cancer cells. Moreover, KCa3.1 channels have been shown to crucially contribute to resistance against radiotherapy. Futhermore, the original in vitro data on KCa3.1 channel expression in subtypes of glioblastoma stem(-like) cells propose KCa3.1 as marker for the mesenchymal subgroup of cancer stem cells and suggest that KCa3.1 contributes to the therapy resistance of mesenchymal glioblastoma stem cells.

Conclusion: The data suggest KCa3.1 channel targeting in combination with radiotherapy as promising new tool to eradicate therapy-resistant mesenchymal glioblastoma stem cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997865PMC
http://dx.doi.org/10.2174/1570159X15666170808115821DOI Listing

Publication Analysis

Top Keywords

kca31 channels
16
kca31 channel
12
kca31
10
cells kca31
8
data kca31
8
stem cells
8
mesenchymal glioblastoma
8
glioblastoma stem
8
glioblastoma
6
cells
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!