Super absorbent polymer seed coatings promote seed germination and seedling growth of Caragana korshinskii in drought.

J Zhejiang Univ Sci B

National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.

Published: August 2017

AI Article Synopsis

  • * The study focused on five types of SAPs, revealing that these coatings improve germination rates and reduce oxidative stress and damage during seedling development.
  • * In a practical application in Inner Mongolia, seeds coated with the most effective SAP (D) showed a twofold increase in seedling growth compared to uncoated seeds, indicating potential benefits for planting in drought-prone areas.

Article Abstract

Coating seeds with water absorbent materials can improve their survival, especially for those planted in drought or barren areas. In this study, effects of five kinds of super absorbent polymers (SAPs) on seed germination and seedling growth of Caragana korshinskii under drought conditions were investigated. Our results showed that SAP coatings could significantly improve the percentage and energy of seed germination, as well as reduce the relative electrical conductivity (REC), proline, malondialdehyde (MDA), HO content, and peroxidase (POD) activity during germination. These results implied that seeds could uptake moisture from SAP coatings to alleviate drought-induced oxidative stress and membrane damage, thus exhibiting a better vigor and germination performance. After coating C. korshinskii seeds with SAPs, more seedlings emerged and grew better. Under the combined influence of the water absorption capacity of SAP and other factors, the efficiencies of five SAP coatings are in the sequence D>E>B>A>C. The function of the SAP coating on promoting seedling survival was confirmed in Mu Us Sandy Land in Ordos, Inner Mongolia Autonomous Region, China. The average seedling number of SAP D-coated seeds increased twofold on that of naked seeds. Our results are expected to be helpful in understanding and utilizing SAP seed coatings in improving plant survival under drought conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565517PMC
http://dx.doi.org/10.1631/jzus.B1600350DOI Listing

Publication Analysis

Top Keywords

seed germination
12
sap coatings
12
super absorbent
8
seed coatings
8
germination seedling
8
seedling growth
8
growth caragana
8
caragana korshinskii
8
korshinskii drought
8
drought conditions
8

Similar Publications

The biomechanical, morphological and ecophysiological properties of plant seed/fruit structures are adaptations that support survival in unpredictable environments. High phenotypic variability of noxious and invasive weed species such as Raphanus raphanistrum (wild radish) allow diversification into new environmental niches. Dry indehiscent fruits (thick and lignified pericarp [fruit coat] enclosing seeds) have evolved many times independently.

View Article and Find Full Text PDF

Methodological study on coal-based microbial modification of mineral black clay to overcome plant growth challenges on open-pit mine dumps in cold regions.

MethodsX

June 2025

CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, PR China.

A critical challenge in ecological restoration of open-pit mine dumps in cold regions with limited topsoil resources is how to rapidly mitigate the plant growth-inhibitory effects of mineral black clay, thereby converting it into arable soil. Leveraging the high degradation capacity of coal seam-associated microorganisms on fossil carbon materials, combined with soil conditioning techniques, this study developed a microbial-based approach for modifying black clay. Seed germination experiments informed both laboratory and field trial designs.

View Article and Find Full Text PDF

Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.

View Article and Find Full Text PDF

A purple-pigmented (purple) rice seeds containing an anthocyanin, a major class of flavonoids, and their isogenic non-pigmented (white) seeds were exposed outside of the international space station (ISS) to evaluate the impact of anthocyanin on seed viability in space. The rice seeds were placed in sample plates at the exposed facility of ISS for 440 days, with the bottom layer seeds exposed to space radiation and the top layer seeds exposed to both solar light and space radiation. Though the seed weight of both purple and white seeds decreased after exposure to outer space, growth percentages after germination of purple and white seeds in the top layer were 55 and 15 %, respectively, compared to those in the bottom layer 100 and 70 %, respectively.

View Article and Find Full Text PDF

Overexpressing OsNF-YB12 elevated the content of jasmonic acid and impaired drought tolerance in rice.

Plant Sci

January 2025

Shanghai Agrobiological Gene Center, Shanghai, 201106 China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China. Electronic address:

Nuclear factor Y (NF-Y) is an evolutionarily conserved heterotrimeric transcription factor in eukaryotes. In a previous study, OsNF-YB12 was confirmed to be associated with drought tolerance using the Ecotilling method. In this study, real-time quantitative RT-PCR revealed that OsNF-YB12 was induced by various abiotic stresses and phytohormones, with expression levels differing between leaves and roots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!