Cortical neuropil modulations recorded by calcium imaging reflect the activity of large aggregates of axo-dendritic processes and synaptic compartments from a large number of neurons. The organization of this activity impacts neuronal firing but is not well understood. Here we used 2-photon imaging with Oregon Green Bapta (OGB) and GCaMP6s to study neuropil visual responses to moving gratings in layer 2/3 of mouse area V1. We found neuropil responses to be strongly modulated and more reliable than neighboring somatic activity. Furthermore, stimulus independent modulations in neuropil activity, i.e., noise correlations, were highly coherent across the cortical surface, up to distances of at least 200 μm. Pairwise neuropil-to-neuropil-patch noise correlation strength was much higher than cell-to-cell noise correlation strength and depended strongly on brain state, decreasing in quiet wakefulness relative to light anesthesia. The profile of neuropil noise correlation strength decreased gently with distance, dropping by ~11% at a distance of 200 μm. This was comparatively slower than the profile of cell-to-cell noise correlations, which dropped by ~23% at 200 μm. Interestingly, in spite of the "salt & pepper" organization of orientation and direction encoding across mouse V1 neurons, populations of neuropil patches, even of moderately large size (radius ~100 μm), showed high accuracy for discriminating perpendicularly moving gratings. This was commensurate to the accuracy of corresponding cell populations. The dynamic, stimulus dependent, nature of neuropil activity further underscores the need to carefully separate neuropil from cell soma activity in contemporary imaging studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519560 | PMC |
http://dx.doi.org/10.3389/fncir.2017.00050 | DOI Listing |
J Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Environ Toxicol Chem
January 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye.
Epilepsy, the most common neurological disorder worldwide, is characterized by sudden paroxysmal brain activity, which can be generalized or focal. Extensive research has explored various treatment strategies for this condition. Our study employed a pilocarpine (PL)-induced seizure model in zebrafish (Danio rerio) embryos and larvae to assess the effects of carbamazepine (CBZ)-loaded chitosan-coated PLGA-Zein nanoparticles (NPs) over 96 hours.
View Article and Find Full Text PDFChem Biodivers
December 2024
Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, Annaba, Algeria.
The current study was conducted to explore the phytochemical composition and in vitro antioxidant activity of Moringa oleifera leaves aqueous extract (MOLE), as well as its in vivo modulatory effects on abamectin (ABM)-induced oxidative stress in rat erythrocytes and brain tissue. Following extraction, the total phenolic, flavonoid, condensed tannin and ortho-diphenolic contents of MOLE were determined. High-performance liquid chromatography (HPLC) analysis allowed the identification and the quantification of 12 bioactive compounds: gallic acid, chlorogenic acid, caffeic acid, vanillic acid, quercetin, ferulic acid, ascorbic acid, alizarin, hesperidin, neohesperidin, resveratrol, and naringin.
View Article and Find Full Text PDFReduced mitochondrial quality and quantity in tumors is associated with dedifferentiation and increased malignancy. However, it remains unclear how to restore mitochondrial quantity and quality in tumors, and whether mitochondrial restoration can drive tumor differentiation. Our study shows that restoring mitochondrial function using retinoic acid (RA) to boost mitochondrial biogenesis and a mitochondrial uncoupler to enhance respiration synergistically drives neuroblastoma differentiation and inhibits proliferation.
View Article and Find Full Text PDFExp Physiol
November 2024
Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behaviour are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!