Single-impurity-induced Dicke quantum phase transition in a cavity-Bose-Einstein condensate.

Sci Rep

Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China.

Published: August 2017

We present a new generalized Dicke model, an impurity-doped Dicke model (IDDM), by the use of an impurity-doped cavity-Bose-Einstein condensate (BEC). It is shown that the impurity atom can induce Dicke quantum phase transition (QPT) from the normal phase to superradiant phase at a critic value of the impurity population. It is found that the impurity-induced Dicke QPT can happen in an arbitrary field-atom coupling regime while the Dicke QPT in the standard Dicke model occurs only in the strong coupling regime of the cavity field and atoms. This opens the possibility to realize the control of quantum properties of a macroscopic-quantum system (BEC) by using a microscopic quantum system (a single impurity atom).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547108PMC
http://dx.doi.org/10.1038/s41598-017-07899-xDOI Listing

Publication Analysis

Top Keywords

dicke model
12
dicke quantum
8
quantum phase
8
phase transition
8
cavity-bose-einstein condensate
8
impurity atom
8
dicke qpt
8
coupling regime
8
dicke
6
single-impurity-induced dicke
4

Similar Publications

Reinforcement Learning Optimization of the Charging of a Dicke Quantum Battery.

Phys Rev Lett

December 2024

Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany.

Quantum batteries are energy-storing devices, governed by quantum mechanics, that promise high charging performance thanks to collective effects. Because of its experimental feasibility, the Dicke battery-which comprises N two-level systems coupled to a common photon mode-is one of the most promising designs for quantum batteries. However, the chaotic nature of the model severely hinders the extractable energy (ergotropy).

View Article and Find Full Text PDF

Breakdown of the Quantum Distinction of Regular and Chaotic Classical Dynamics in Dissipative Systems.

Phys Rev Lett

December 2024

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, C.P. 04510 Mexico City, Mexico.

Quantum chaos has recently received increasing attention due to its relationship with experimental and theoretical studies of nonequilibrium quantum dynamics, thermalization, and the scrambling of quantum information. In an isolated system, quantum chaos refers to properties of the spectrum that emerge when the classical counterpart of the system is chaotic. However, despite experimental progress leading to longer coherence times, interactions with an environment can never be neglected, which calls for a definition of quantum chaos in dissipative systems.

View Article and Find Full Text PDF

We introduce protocols to prepare many-body quantum states with quantum circuits assisted by local operations and classical communication. We show that by lifting the requirement of exact preparation, one can substantially save resources. In particular, the so-called W and, more generally, Dicke states require a circuit depth and number of ancillas per site that are independent of the system size.

View Article and Find Full Text PDF

Correction: Herrera Romero, R.; Bastarrachea-Magnani, M.A. Phase and Amplitude Modes in the Anisotropic Dicke Model with Matter Interactions. 2024, , 574.

Entropy (Basel)

November 2024

Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Mexico City C.P. 09310, Mexico.

The authors wish to make the following correction to this published paper [...

View Article and Find Full Text PDF

The axis-symmetric modeling technique is based on expanding vector fields in cylindrical harmonics and computing the response on a two-dimensional cross-section separately for each azimuthal harmonic, significantly reducing computational costs. However, it has limitations when dealing with dipoles placed away from the symmetry axis due to challenges in the expansion of angular modes. To address this, we propose a reformulated axis-symmetric model based on the Fourier expansion of the delta function distribution concerning the azimuthal variable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!