Outer membrane protein (OMP) biogenesis in is a robust process essential to the life of the organism. It is catalyzed by the β-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pathway. Little is known, however, about how periplasmic proteases recognize and degrade OMP substrates when assembly is compromised or whether different proteases recognize the same substrate at distinct points in the assembly pathway. In this work, we use well-defined assembly-defective mutants of LptD, the essential lipopolysaccharide assembly translocon, to show that the periplasmic protease DegP degrades substrates with assembly defects that prevent or impair initial contact with Bam, causing the mutant protein to accumulate in the periplasm. In contrast, another periplasmic protease, BepA, degrades a LptD mutant substrate that has engaged the Bam complex and formed a nearly complete barrel. Furthermore, we describe the role of the outer membrane lipoprotein YcaL, a protease of heretofore unknown function, in the degradation of a LptD substrate that has engaged the Bam complex but is stalled at an earlier step in the assembly process that is not accessible to BepA. Our results demonstrate that multiple periplasmic proteases monitor OMPs at distinct points in the assembly process. OMP assembly is catalyzed by the essential Bam complex and occurs in a cellular environment devoid of energy sources. Assembly intermediates that misfold can compromise this essential molecular machine. Here we demonstrate distinctive roles for three different periplasmic proteases that can clear OMP substrates with folding defects that compromise assembly at three different stages. These quality control factors help ensure the integrity of the permeability barrier that contributes to the intrinsic resistance of Gram-negative organisms to many antibiotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637175 | PMC |
http://dx.doi.org/10.1128/JB.00418-17 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Bacterial cell wall assembly and remodeling require activities of peptidoglycan (PG) hydrolases as well as PG synthases. In particular, the activity of DD-endopeptidases, which cleave the 4-3 peptide crosslinks in PG, is essential for PG expansion in gram-negative bacteria. Maintaining optimal levels of DD-endopeptidases is critical for expanding PG without compromising its integrity.
View Article and Find Full Text PDFJ Microbiol
December 2024
Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Jeju, 62632, Republic of Korea.
The production of recombinant proteins in Escherichia coli is often challenged by cytoplasmic expression due to proteolytic degradation and inclusion body formation. Extracellular expression can overcome these problems by simplifying downstream processing and improving protein yields. This study aims to compare the efficiency of two Bacillus subtilis chitosanase signal peptides in mediating extracellular secretion in E.
View Article and Find Full Text PDFAccess Microbiol
November 2024
Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, Netherlands.
The Tol-Pal proteins stabilize the outer membrane during cell division in many Gram-negative bacteria, including . Pal is an outer membrane lipoprotein that can bind peptidoglycan. It accumulates at the septum during division by a mobilization-and-capture mechanism.
View Article and Find Full Text PDFInfect Immun
December 2024
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Tail-specific proteases (Tsp) are members of a widely distributed family of serine proteases that commonly target and process periplasmic proteins in Gram-negative bacteria. The obligately intracellular, Gram-negative encode a highly conserved Tsp homolog whose target and function are unclear. We identified a mutant with a nonsense mutation in .
View Article and Find Full Text PDFProtein Expr Purif
February 2025
Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran. Electronic address:
Recombinant production of lysyl endopeptidase (Lys-C) which is frequently used in proteomics is still challenging due to its complex structure. Herein, periplasmic expression and determining effective factors for recovery of the active enzyme were investigated. The codon-optimized Lys-C gene was cloned into pET26b (+) for periplasmic expression in E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!