In early biological evolution anoxygenic photosynthetic bacteria may have been established through the acquisition of ribulose bisphosphate carboxylase-oxygenase (Rubisco). The establishment of cyanobacteria may have followed and led to the production of atmospheric oxygen. It has been postulated that a unicellular cyanobacterium evolved to cyanelles which were evolutionary precursors of chloroplasts of both green and non-green algae. The latter probably diverged from ancestors of green algae as evidenced by the occurrence of large (L) and small (S) subunit genes for Rubisco in the chloroplast genome of the chromophytic algae Olisthodiscus luteus. In contrast, the gene for the S subunit was integrated into the nucleus in the evolution of green algae and higher plants. The evolutionary advantages of this integration are uncertain because the function of S subunits is unknown. Recently, two forms of Rubisco (L8 and L8S8) of almost equivalent carboxylase and oxygenase activity have been isolated from the photosynthetic bacterium Chromatium vinosum. This observation perpetuates the enigma of S subunit function. Current breakthroughs are imminent, however, in our understanding of the function of catalytic L subunits because of the application of deoxyoligonucleotide-directed mutagenesis. Especially interesting mutated Rubisco molecules may have either enhanced carboxylase activity or higher carboxylase:oxygenase ratios. Tests of expression, however, must await the insertion of modified genes into the nucleus and chloroplasts. Methodology to accomplish chloroplast transformation is as yet unavailable. Recently, we have obtained the first transformation of cyanobacteria by a colE1 plasmid. We regard this transformation as an appropriate model for chloroplast transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rstb.1986.0042DOI Listing

Publication Analysis

Top Keywords

large small
8
green algae
8
chloroplast transformation
8
rubisco
5
interaction functional
4
functional relations
4
relations evolution
4
evolution large
4
small subunits
4
subunits rubisco
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!