Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metals can be immobilized on biochars by precipitation with carbonate. The distribution of metal-carbonate phases at the surface of biochars and the conditions of their formation, however, are unknown. Electron microscopy and X-photon spectroscopy were used to characterize carbonate phases in various morphological groups of particles of a wood-derived biochar, both before and after a metal-sorption experiment. Our results showed that the distribution of metals at the surface of biochar particles depended on the corresponding wood tissues and the presence of carbonate phases. Metals were particularly concentrated (i) within calcium carbonate crystals in bark-derived particles, which originated from calcium oxalate crystals formed prior to pyrolysis, and (ii) as new phases formed by the reprecipitation of carbonate on specific tissues of biochar. The formation of biochar carbonate phases and their redistribution by dissolution-precipitation mechanisms may primarily control the localization of metals on biochar particles and the durability of metals immobilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2017.04.0152 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!