Genome editing has potential for the targeted correction of germline mutations. Here we describe the correction of the heterozygous MYBPC3 mutation in human preimplantation embryos with precise CRISPR-Cas9-based targeting accuracy and high homology-directed repair efficiency by activating an endogenous, germline-specific DNA repair response. Induced double-strand breaks (DSBs) at the mutant paternal allele were predominantly repaired using the homologous wild-type maternal gene instead of a synthetic DNA template. By modulating the cell cycle stage at which the DSB was induced, we were able to avoid mosaicism in cleaving embryos and achieve a high yield of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of off-target mutations. The efficiency, accuracy and safety of the approach presented suggest that it has potential to be used for the correction of heritable mutations in human embryos by complementing preimplantation genetic diagnosis. However, much remains to be considered before clinical applications, including the reproducibility of the technique with other heterozygous mutations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature23305 | DOI Listing |
Blood Cancer Discov
January 2025
Princess Máxima Center, Utrecht, Netherlands.
In pediatric hematopoietic cell transplantation (HCT) recipients, transplanted donor cells may need to function far beyond normal human lifespan. Here, we investigated the risk of clonal hematopoiesis (CH) in 144 pediatric long-term HCT survivors and 258 non-transplanted controls. CH was detected in 16% of HCT recipients and 8% of controls, at variant allele frequencies (VAFs) of 0.
View Article and Find Full Text PDFHead Neck Pathol
January 2025
Department of Pathology, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands.
Purpose: The NAB2::STAT6 fusion is predominantly associated with solitary fibrous tumors (SFTs) and is utilized in diagnosing SFTs through nuclear STAT6 protein overexpression. Recent studies expanded the phenotypic spectrum of NAB2::STAT6 rearranged neoplasms, including adamantinoma-like and teratocarcinosarcoma-like phenotypes. We report a case of a NAB2::STAT6 rearranged epithelial tumor exhibiting sebaceous differentiation in the parotid gland.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Molecular Biology Vadi Kampüsü, Istanbul Atlas University, Anadolu Cd., No 40, Kağıthane, Istanbul, 34408, Turkey.
Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey.
Background: La-related protein 7 (LARP7) is a key regulator of RNA metabolism and is thought to play a role in various cellular processes. LARP7 gene autosomal recessive mutations are the cause of Alazami syndrome, which presents with skeletal abnormalities, intellectual disabilities, and facial dysmorphisms. This study aimed to determine the role of LARP7 in modulating gene expression dynamics during osteogenesis.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Binzhou Medical University School of Nursing, Binzhou, 256603, Shandong, China.
Purpose: RING Finger 187 (RNF187) has recently emerged as a potential contributor to tumorigenesis. However, a comprehensive pan-cancer analysis of RNF187 in human tumors has not been undertaken until now.
Methods: Our study aims to investigate RNF187 expression across 33 different types of human tumors, utilizing data from the TCGA and GTEx databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!