Chemisorption of lanthanide ions on succinate-functionalized mesoporous silica: An in situ characterization by fluorescence.

J Colloid Interface Sci

Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina. Electronic address:

Published: December 2017

Chemisorption of Eu and Tb on SBA-15 functionalized with succinic groups has been studied by in situ steady-state fluorescence measurements. The enhancement of the emission sensitive bands indicates that both ions adsorb forming inner-sphere surface complexes. Adsorption is a fast process that attains equilibrium in about 5min. The variation of the peaks maxima (I and I, for europium, and I and I, for terbium) with the total ion concentration is accounted for by the sum of the contributions due to the adsorbed and free ions. The former contribution is langmuirian. At pH 4.5, the respective adsorption constants are 5×10 and 3×10M, and the maximum adsorption capacities are 5.10×10 and 5.23×10molg. The mismatch between the latter values and the number of attached carboxylic groups is discussed. Comparison with other functionalized mesoporous silicas indicates that the anchored succinic groups are very efficient for removing lanthanide ions from aqueous solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.07.111DOI Listing

Publication Analysis

Top Keywords

lanthanide ions
8
succinic groups
8
chemisorption lanthanide
4
ions
4
ions succinate-functionalized
4
succinate-functionalized mesoporous
4
mesoporous silica
4
silica situ
4
situ characterization
4
characterization fluorescence
4

Similar Publications

Bacterial nanocellulose (BNC) has attracted considerable attention in the field of biomedical engineering due to its potential for use in bone regeneration applications. The present study investigates the in vitro and in vivo efficacy of bacterial nanocellulose (BNC) combined with calcium and cerium ions (BNC-Ce:CaP) in bone regeneration applications. XRD analysis confirmed the presence of monetite and hydroxyapatite phases in BNC-CaP, while BNC-Ce:CaP revealed an additional brushite phase.

View Article and Find Full Text PDF

Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.

View Article and Find Full Text PDF

Efficient and Robust Europium(III)-Based Hybrid Lanthanide Scintillators for Advanced X-ray Imaging.

Angew Chem Int Ed Engl

January 2025

South China Normal University, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, Panyu University Mega Center, 510006, Guangzhou, CHINA.

Scintillators that convert ionizing radiation into low-energy photons are essential for medical diagnostics and industrial inspections. Despite advances in X-ray scintillators, challenges remain in achieving high efficiency, environmental compatibility, stability, and flexibility. Here, we present experimental investigations of a new type of europium(III)-based hybrid ternary complex scintillators for improved X-ray detection and imaging.

View Article and Find Full Text PDF

Conformationally Adaptable Extractant Flexes Strong Lanthanide Reverse-Size Selectivity.

J Am Chem Soc

January 2025

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Chemical selectivity is traditionally understood in the context of rigid molecular scaffolds with precisely defined local coordination and chemical environments that ultimately facilitate a given transformation of interest. By contrast, nature leverages dynamic structures and strong coupling to enable specific interactions with target species in otherwise complex media. Taking inspiration from nature, we demonstrate unconventional selectivity in the solvent extraction of light over heavy lanthanides using a conformationally flexible ligand called octadecyl acyclopa (ODA).

View Article and Find Full Text PDF

Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer.

J Am Chem Soc

January 2025

Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!