Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, dehydration in pigs, and high mortality rates in piglets <3 weeks of age. Maternal immunity protects piglets, but information on vaccination before or after natural infection in endemically exposed sow herds is limited. Currently, the recovery goal in sow units infected with PEDV is to become fully naive again or use natural virus infection to develop immune gilts through a feedback program before introduction into the sow herd. Since neutralizing antibodies in the gut are critical for protection against enteric viral infections such as PEDV, we evaluated the effect of a conditionally licensed, adjuvanted inactivated PEDV vaccine on neutralizing antibody levels in milk and colostrum in both naive and previously naturally exposed sow herds. The results illustrate that intramuscular vaccination increased neutralizing antibody titers, and anti-PEDV IgA and IgG in milk and colostrum of sows that were previously infected. Thus, inactivated PEDV vaccines may provide increased protection to piglets nursing on previously infected sows against exposure to PEDV through increased delivery of lactogenic neutralizing antibodies to the enteric site of infection.

Download full-text PDF

Source
http://dx.doi.org/10.1089/vim.2017.0023DOI Listing

Publication Analysis

Top Keywords

porcine epidemic
8
epidemic diarrhea
8
diarrhea virus
8
booster vaccination
4
vaccination inactivated
4
inactivated porcine
4
virus neutralizing
4
neutralizing antibody
4
antibody response
4
response mammary
4

Similar Publications

Recent outbreaks of PRRSV in live attenuated vaccine-immunized pig farms in Tianjin, China have raised questions about the etiological characteristics and pathogenicity of the PRRSV variant, which remains unknown. In this study, a multiple lineages recombinant PRRSV strain named TJ-C6, was isolated and identified. Phylogenetic trees and genome homology analyses revealed that TJ-C6 belonged to lineage 1.

View Article and Find Full Text PDF

Unlabelled: Current influenza vaccination approaches protect against specific viral strains, but do not consistently induce broad and long-lasting protection to the diversity of circulating influenza viruses. Single-cycle viruses delivered to the respiratory tract may offer a promising solution as they safely express a diverse array of viral antigens by undergoing just one round of cell infection in their host and stimulate broadly protective resident memory T-cell responses in the lung. We have previously developed a vaccine candidate called S-FLU, which is limited to a single cycle of infection by inactivation of the hemagglutinin signal sequence and induces a broadly cross-reactive T-cell response and antibodies to neuraminidase, but fails to induce neutralizing antibodies to hemagglutinin after intranasal administration.

View Article and Find Full Text PDF

Unlabelled: . resistant to fluoroquinolones and macrolides are serious public health threats. Studies aiming to identify risk factors for drug-resistant have narrowly focused on antimicrobial use at the farm level.

View Article and Find Full Text PDF

Bacteriophage M13KE as a Nanoparticle Platform to Display and Deliver a Pathogenic Epitope: Development of an Effective Porcine Epidemic Diarrhoea Virus Vaccine.

Microb Pathog

January 2025

Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China. Electronic address:

Porcine epidemic diarrhoea virus (PEDV) is a porcine enteric coronavirus, outbreaks and epidemics of which have caused huge economic losses to the livestock industry. The disadvantage of existing PEDV vaccines is that the unstable efficacy and high cost limit their widespread use. Therefore, there is an urgent need to develop a recombinant transgenic vaccine candidate for PEDV.

View Article and Find Full Text PDF

Characterization of a cell-adapted completely attenuated genotype GIIa porcine epidemic diarrhea virus strain.

Virology

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China. Electronic address:

Porcine epidemic diarrhea virus (PEDV) has caused significant harm to the global pig industry since its discovery. In this study, a highly pathogenic strain of GIIa PEDV CH/HBXT/2018, isolated previously, was continuously passaged in Vero cells up to passage (P)240, resulting in a completely attenuated virus. The proliferation characteristics of different passages of the strain in Vero cells, pathogenicity in newborn piglets, and mutations in S gene sequence indicated that as the passage number increased, the replication efficiency of PEDV in Vero cells gradually improved, with a more pronounced cytopathic effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!