Presence of Fluorescent Carbon Nanoparticles in Baked Lamb: Their Properties and Potential Application for Sensors.

J Agric Food Chem

School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China.

Published: August 2017

The presence of nanoparticles in food has drawn much attention in recent years. Fluorescent carbon nanoparticles are a new class of nanostructures; however, the distribution and physicochemical properties of such nanoparticles in food remain unclear. Herein, the presence of fluorescent carbon nanoparticles in baked lamb was confirmed, and their physicochemical properties were investigated. The fluorescent carbon nanoparticles from baked lamb emit strong blue fluorescence under ultraviolet light with a 10% fluorescent quantum yield. The nanoparticles are roughly spherical in appearance with a diameter of around 2.0 nm. Hydroxyl, amino, and carboxyl groups exist on the surface of nanoparticles. In addition, the nanoparticles could serve as a fluorescence sensor for glucose detection through an oxidation-reduction reaction. This work is the first report on fluorescent carbon nanoparticles present in baked lamb, which provides valuable insight into the physicochemical properties of such nanoparticles and their potential application in sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.7b02913DOI Listing

Publication Analysis

Top Keywords

fluorescent carbon
20
carbon nanoparticles
20
nanoparticles baked
16
baked lamb
16
physicochemical properties
12
nanoparticles
11
presence fluorescent
8
potential application
8
application sensors
8
nanoparticles food
8

Similar Publications

BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues.

Biosensors (Basel)

December 2024

State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.

Peroxynitrite (ONOO) plays an important role in many physiological and pathological processes. Excessive ONOO in cells leads to oxidative stress and inflammation. However, precise monitoring of ONOO levels in specific organelles (e.

View Article and Find Full Text PDF

Exploring Distinct Second-Order Data Approaches for Thiamine Quantification via Carbon Dot/Silver Nanoparticle FRET Reversion.

Biosensors (Basel)

December 2024

LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.

Accurate and selective monitoring of thiamine levels in multivitamin supplements is essential for preventing deficiencies and ensuring product quality. To achieve this, a Förster resonance energy transfer (FRET) system using carbon dots (CDs) as energy donors and citrate-stabilized silver nanoparticles (AgNPs) as energy acceptors was developed. The aqueous synthesis of AgNPs using microwave irradiation was optimized to obtain efficient plasmonic nanoparticles for FRET applications, targeting maximal absorbance intensity, stability, and wavelength alignment.

View Article and Find Full Text PDF

The activated carbon from marigold flowers (MG) was used to make an unlabeled electrochemical immunosensor to determine prostate cancer. MG was synthesized by hydrothermal carbonization and pyrolysis. MG had a large surface area, was highly conductive, and biocompatible.

View Article and Find Full Text PDF

Developing hybrid fluorescence (FL)/room-temperature phosphorescent (RTP) materials in dry-state, aqueous, and organic solvents holds paramount importance in broadening their applications. However, it is extremely challenging due to dissolved oxygen and solvent-assisted relaxation causing RTP quenching in an aqueous environment and great dependence on SiO-based materials. Herein, an efficient endogenetic carbon dot (CD) strategy within melamine-formaldehyde (MF) microspheres to activate RTP of CDs has been proposed through the pyrolysis of isophthalic acid (IPA) molecules and branched-chain intra-microspheres.

View Article and Find Full Text PDF

[Construction of a 17-estradiol sensor based on a magnetic graphene oxide/aptamer separating material].

Se Pu

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!