Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three-dimensional (3D) printing has proven to be a versatile and useful technology for specialized applications in industry and also for scientific research. We demonstrate its potential use toward the electrochemical detection of nitroaromatic compounds 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), and fenitrothion (FT). The detection of these compounds is of utmost importance in military and forensic applications. Stainless steel electrodes were fabricated by 3D printing, and the surface was electroplated with gold. The electrochemical performance of the 3D printed electrodes was compared to that of the conventionally employed glassy carbon electrode (GCE) and proved to be more sensitive toward the detection of all three nitroaromatic compounds. 3D printing of customizable electrodes provides a viable alternative to traditional electrodes for the analysis of samples with electrochemical methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.7b01614 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!