The ability to detect chiral molecules renders plasmonic nanosensors as promising tools for the study of chirality phenomena in living systems. Using gold nanorod based plasmonic nanosensors, we investigated here typically chiral zwitterionic electrostatic (Zw-Es) and hydrogen-bonding (Hb) interactions occurring via amine and carboxylic groups at nanoscale interfaces in aqueous solutions. Our results reveal that the plasmonic circular dichroism responses of the nanosensors can have both conformational sensitivity and chiral selectivity to the interfacial molecular interactions. Such a dual function of the plasmonic nanosensors enables a new chiroptical way to differentiate between chiral Zw-Es and Hb interactions, to monitor the transformation between these two interaction forces, and particularly to recognize homochiral Zw-Es interactions in solution. Together with the surface enhanced Raman scattering (SERS) technique, this plasmonic CD based biosensing could have important values for the insightful understanding of chirality-dependent molecular recognition in biological and pharmaceutical systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp03004e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!