The bacterium Geobacter sulfurreducens is a model biological catalyst in microbial electrochemical devices. G. sulfurreducens forms electrically conductive, electrode-associated biofilms, but the biological structures mediating electrical conduction from cells to the electrodes are a matter of debate. Bacteria in these communities produce a network of fiber-like Type IV pili, which have been proposed to act either as inherent, protein-based electronic conductors, or as electronically inert scaffolds for cytochromes mediating long-range charge transport. Previous studies have examined pilus conduction mechanisms under vacuum and in dry conditions, but their conduction mechanism under physiologically relevant conditions has yet to be characterized. In this work, we isolate G. sulfurreducens pili, and compare the electronic conduction mechanism of both live biofilms and purified pili networks under dry and aqueous conditions. Solid-state I-V characteristics indicate that electronic transport in films of purified pili is representative of conduction in a fiber percolation network. Electrochemical gating measurements in a bipotentiostat device configuration confirm previous results suggesting redox currents dominate live biofilm conduction. Purified pili films, however, exhibit non-redox electronic conduction under aqueous, buffered conditions, and their conductivity increases with decreasing temperature. These findings show that isolated pili possess inherent, non-redox-mediated conductivity consistent with a metallic-like model of charge carrier transport. The results demonstrate an experimental platform for studying electronic transport in biomaterials and suggest that pili serve as an exemplary model for designing bioelectronic interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp03651e | DOI Listing |
Appl Health Econ Health Policy
December 2024
Centre for Health Economics Research and Evaluation, University of Technology Sydney, Level 5, Building 20, 100 Broadway, Chippendale, Sydney, NSW, 2008, Australia.
Objective: This article reviews the assessment pathways that have been implemented worldwide to facilitate access to drugs for patients with rare diseases.
Methods: The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used to conduct a systematic literature review. The Ovid (Embase/MEDLINE), Cochrane, Web of Science, Econlit, National Institute of Health Research, Centre for Reviews and Dissemination, and International Network of Agencies for Health Technology Assessment databases were searched.
ACS Appl Mater Interfaces
December 2024
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
Although MoSe-based photodetectors have achieved excellent performance, the ultrafast photoresponse has limited their application as an optoelectronic synapse. In this paper, the enhancement of the rhodamine 6G molecule on the memory time of MoSe is reported. It is found that the memory time of monolayer MoSe can be obviously enhanced after assembly with rhodamine 6G exhibiting synaptic characteristics in comparison to pristine MoSe.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Center for Optics Research and Engineering, State Key Laboratory of Crystal Materials, Shandong University, Qingdao 266237, China.
Shear mode ultrasonic waves are in high demand for structural health monitoring (SHM) applications owing to their nondispersive characteristics, singular mode, and minimal energy loss, especially in harsh environments. However, the generation and detection of a pure shear wave using conventional piezoelectric materials present substantial challenges because of their complex piezoelectric response, involving multiple modes. Herein, we introduce a high-quality piezoelectric crystal BiSiO (BSO), exhibiting a robust piezoelectric response ( = 45.
View Article and Find Full Text PDFJ Obstet Gynaecol
December 2025
Department of Gynecology, Zunhua People's Hospital, Zunhua, Hebei, China.
Background: The gonadotropin-releasing hormone antagonist (GnRH-ant) protocol is associated with few oocytes retrieved, few mature oocytes and poor endometrial receptivity. Omission of GnRH-ants on trigger day seems unlikely to induce preovulation and may improve outcomes in the GnRH-ant protocol. This study aimed to systematically evaluate the effects of GnRH-ant cessation on trigger day on in vitro fertilisation outcomes following the GnRH-ant protocol.
View Article and Find Full Text PDFGenet Med
December 2024
Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
Purpose: Genomic sequencing of newborns (NBSeq) can initiate disease surveillance and therapy for children, and may identify at-risk relatives through reverse cascade testing. We explored genetic risk communication and reverse cascade testing among families of newborns who underwent exome sequencing and had a risk for autosomal dominant disease identified.
Methods: We conducted semi-structured interviews with parents of newborns enrolled in the BabySeq Project who had a pathogenic or likely-pathogenic (P/LP) variant associated with an autosomal dominant (AD) childhood- and/or adult-onset disease returned.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!