Emergence of low virulent carbapenem-resistant hypermucoviscous Klebsiella pneumoniae in China.

J Infect

Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. Electronic address:

Published: November 2017

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinf.2017.07.009DOI Listing

Publication Analysis

Top Keywords

emergence low
4
low virulent
4
virulent carbapenem-resistant
4
carbapenem-resistant hypermucoviscous
4
hypermucoviscous klebsiella
4
klebsiella pneumoniae
4
pneumoniae china
4
emergence
1
virulent
1
carbapenem-resistant
1

Similar Publications

The purpose of this review is to compile and discuss available evidence in humans on the efficacy of YHM supplementation on performance in different exercise modalities. Yohimbine (YHM) is a naturally occurring alkaloid that induces increases in sympathetic nervous system (SNS) activation effectively initiating "fight or flight" responses. In supplement form, YHM is commonly sold as an isolated product or combined into multi-ingredient exercise supplements and is widely consumed in fitness settings despite the lack of empirical support until recently.

View Article and Find Full Text PDF

Background: Insulin pumps coupled with continuous glucose monitoring sensors use algorithms to analyze real-time blood glucose levels. This allows for the suspension of insulin administration before hypoglycemic thresholds are reached or for adaptive tuning in hybrid closed-loop systems. This longitudinal retrospective study aims to analyze real-world glycemic outcomes in a pediatric population transitioning to such devices.

View Article and Find Full Text PDF

Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource.

View Article and Find Full Text PDF

Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.

View Article and Find Full Text PDF

: Dietary patterns, including high-fat and high-carbohydrate diets (HFDs and HCDs), as well as non-dietary factors such as food additives and antibiotics, are strongly linked to metabolic endotoxemia, a critical driver of low-grade chronic inflammation. This review explores the mechanisms through which these factors impair intestinal permeability, disrupt gut microbial balance, and facilitate lipopolysaccharide (LPS) translocation into the bloodstream, contributing to metabolic disorders such as obesity, type 2 diabetes mellitus, and inflammatory bowel disease. : The analysis integrates findings from recent studies on the effects of dietary components and gut microbiota interactions on intestinal barrier function and systemic inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!