A magnetic propeller agitator and a magnetic reactor were designed to enhance the removal of heavy metals by zerovalent iron (ZVI) in comparison with the non-magnetic reactor. The weak magnetic field (WMF) applied significantly improved the CuII-EDTA removal by ZVI from 10% without WMF to 98% with WMF within 2.5 h at pHini 6.0. The pseudo-first-order rate constants of Cu(II) and As(V) removal by ZVI in the magnetic reactor were increased by 1.51-5.17 and 2.97-5.91 fold, respectively, compared to those obtained in the non-magnetic reactor. The performance of ZVI for treating practical industrial wastewater in the designed magnetic reactor was tested, and the removal of total Cu, P and Zn by ZVI was greatly accelerated. After precipitation of the practical wastewater samples, the concentrations of total Cu, P, Zn decreased to the industrial drainage standard values in 20, 3, 25 min, respectively, in the magnetic reactor, whereas the reaction time needed to eliminate total P and Zn was 10 and 60 min, and the residual total Cu still exceeded the drainage standard values in 2 h in the non-magnetic reactor. The application of magnetic reactor for industrial wastewater treatment is expected to improve the sustainability of ZVI technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2017.1360398 | DOI Listing |
J Hazard Mater
January 2025
CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC, United States.
Within the ITER project (International Thermonuclear Experimental Reactor) an international project building a magnetic confinement device to achieve fusion as a sustainable energy source, tungsten (W) is planned to serve as a plasma-facing component (PFC) in the tokamak, a magnetic confinement device used to produce controlled thermonuclear fusion power. Post plasma-W interactions, submicron tungsten particles can be released. This study investigated the exposure of lentic freshwater ecosystems to ITER-like tungsten nanoparticles in indoor aquatic mesocosms.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
Nanosecond pulse power has many driving advantages in the dielectric barrier discharge (DBD) application field, including better discharge effect, higher discharge efficiency, and lower electrode temperature. A high-voltage pulse voltage power supply (HV-PVPS) with a multi-turn ratio linear pulse transformer (PT) based on Marx circuit and PT topologies are suitable for most DBD plasma applications with fewer expansion modules, lower cost, smaller volume, and higher reliability comparing with the all-solid-state Marx nanosecond pulse power supply. However, during the process of DBD driven by an HV-PVPS based on Marx and PT topologies, the PT is prone to magnetic core saturation, which limits the application for DBD.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China.
Magnetic resonance imaging (MRI) is a cornerstone technology in clinical diagnostics and in vivo research, offering unparalleled visualization capabilities. Despite significant advancements in the past century, traditional H MRI still faces sensitivity limitations that hinder its further development. To overcome this challenge, hyperpolarization methods have been introduced, disrupting the thermal equilibrium of nuclear spins and leading to an increased proportion of hyperpolarized spins, thereby enhancing sensitivity by hundreds to tens of thousands of times.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia.
Nuclear magnetic resonance is extremely attractive for operando studies of chemical reactors. However, the heterogeneous catalyst particles placed inside an NMR probe greatly affect the uniformity of the magnetic field. This problem is especially acute when studying heterogeneous hydrogenation processes using parahydrogen.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
Understanding the droplet coalescence/merging is vital for many areas of microfluidics such as biochemical reactors, drug delivery, inkjet printing, oil recovery, etc. In the present study, we carried out numerical simulations of two magnetic droplets suspended in a nonmagnetic fluid matrix and coalescing under the influence of an external magnetic field. We observed that the applied magnetic field played a key role in the merging dynamics of the magnetic droplets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!