Sperm DNA damage, excessive oxidative stress and decrease in motility ‎may lead to low fertilisation or poor‎ assisted reproductive techniques outcomes in asthenoteratozoospermic ‎men. Selenium was considered as essential element for male reproductive functions. Selenium has important role in enzymatic process for elimination of excessive reactive oxygen species and helps to maintain membrane integrity. The aim of this study was to determine the effect of selenium supplementation on sperm quality, DNA fragmentation, mitochondrial membrane potential and membrane lipid peroxidation during sperm sampling in vitro at different times. In this experimental study, semen samples were collected from 50 asthenoteratozoospermic men. Samples were divided into two groups as control group and test group (incubated with 2 μg/ml selenium at 37°C for 2, 4 and 6 hr). Motility and viability were assessed based on WHO 2010 criteria. Mitochondrial membrane potential, sperm DNA fragmentation and malondialdehyde levels were evaluated in each group. Results revealed that motility, viability and mitochondrial membrane potential were significantly higher in the test group (p < .05). Also malondialdehyde levels were significantly lower in the test group (p < .03). DNA fragmentation significantly decreased in the test group after 6 hr of incubation (p < .02). In conclusion, in vitro selenium supplementation may protect spermatozoa from maltreatment effect of reactive oxygen species (ROS) during sperm sampling via keeping enzymatic and antioxidant process in optimum condition.

Download full-text PDF

Source
http://dx.doi.org/10.1111/and.12869DOI Listing

Publication Analysis

Top Keywords

mitochondrial membrane
12
membrane potential
12
selenium supplementation
8
supplementation sperm
8
sperm quality
8
asthenoteratozoospermic men
8
sperm dna
8
dna fragmentation
8
test group
8
motility viability
8

Similar Publications

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed.

View Article and Find Full Text PDF

Acid triggering highly-efficient release of reactive oxygen species to block mitochondrial-mediated homeostasis maintenance for accelerating cell death.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China. Electronic address:

A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency.

View Article and Find Full Text PDF

Expression, characterization and anti-colon cancer activity of recombinant ginseng peptides with amino acid tandem repeats.

Protein Expr Purif

January 2025

Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China. Electronic address:

Ginseng peptides, small molecule active ingredients in ginseng, are mainly extracted naturally or synthesised chemically, but high costs and difficulties hinder further research. In this study, a ginseng hexapeptide FKEHGY, named antitumor peptide 0601 (AT0601) and its five tandem sequence repeats AT0605, were expressed in Bacillus subtilis WB600 for the first time, and the bioactivity study showed that the anticancer activity of AT0605 was even significantly higher than that of AT0601 for colon cancer CT26 cells, with IC50s of 16.82±1.

View Article and Find Full Text PDF

Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!