The number of patients with chronic wounds is increasing constantly in today's aging society. However, little work is done so far tackling the associated disadvantageous shift of the wound pH. In our study, we developed two different approaches on pH-modulating wound dressing materials, namely, bioactive interpenetrating polymer network hydrogels based on poly(ethylene glycol) diacrylate/N-vinylimidazole/alginate (named VI ) and poly(ethylene glycol) diacrylate/2-dimethylaminoethyl methacrylate/N-carboxyethylchitosan (named DMAEMA ). Both formulations showed a good cytocompatibility and wound healing capacity in vitro. The developed dressing materials significantly increased the cell ingrowth in wounded human skin constructs; by 364% and 313% for the VI and the DMAEMA hydrogel formulation, respectively. Additionally, VI hydrogels were found to be suitable scaffolds for superficial cell attachment. Our research on the material properties suggests that ionic interactions and hydrogen bonds are the driving forces for the mechanical and swelling properties of the examined hydrogels. High amounts of positively charged amino groups in DMAEMA hydrogels caused increased liquid uptake (around 190%), whereas VI hydrogels showed a 10-fold higher maximum compressive stress in comparison to hydrogels without ionizable functional groups. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3360-3368, 2017.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.36177 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!