Particle segmentation algorithm for flexible single particle reconstruction.

Biophys Rep

Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China.

Published: May 2017

As single particle cryo-electron microscopy has evolved to a new era of atomic resolution, sample heterogeneity still imposes a major limit to the resolution of many macromolecular complexes, especially those with continuous conformational flexibility. Here, we describe a particle segmentation algorithm towards solving structures of molecules composed of several parts that are relatively flexible with each other. In this algorithm, the different parts of a target molecule are segmented from raw images according to their alignment information obtained from a preliminary 3D reconstruction and are subjected to single particle processing in an iterative manner. This algorithm was tested on both simulated and experimental data and showed improvement of 3D reconstruction resolution of each segmented part of the molecule than that of the entire molecule.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515998PMC
http://dx.doi.org/10.1007/s41048-017-0038-7DOI Listing

Publication Analysis

Top Keywords

single particle
12
particle segmentation
8
segmentation algorithm
8
particle
5
algorithm
4
algorithm flexible
4
flexible single
4
particle reconstruction
4
reconstruction single
4
particle cryo-electron
4

Similar Publications

Due to the global outbreaks caused by pathogens, disinfection has attracted widespread attention, especially as the final inactivation step in wastewater treatment plants (WWTPs). Ultraviolet (UV) radiation is regarded as one of low carbon disinfection methods without chemical agents, but in practice, the effects are sometimes unsatisfactory, e.g.

View Article and Find Full Text PDF

Glycerol carbonate (GC) can be produced from glycerol (GL), a low-value byproduct in the biodiesel industry. In this work, continuous processes of GC production via transesterification from crude GL and diethyl carbonate (DEC) were developed using Aspen Plus. Two cases were considered, and their process performances were compared.

View Article and Find Full Text PDF

The spin angular momentum (SAM) plays a significant role in light-matter interactions. It is well known that light carrying SAM can exert optical torques on micro-objects and drive rotations, but 3D rotation around an arbitrary axis remains challenging. Here, we demonstrate full control of the 3D optical torque acting on a trapped microparticle by tailoring the vectorial SAM transfer.

View Article and Find Full Text PDF

In this work, the electrochemical biosensor based on the subtle combination of terminal deoxynucleotidyl transferase (TdT), CRISPR/Cas14a, and magnetic nanoparticles (MNPs) was developed for the detection of nasopharyngeal carcinoma (NPC)-derived exosomes. Due to the synergistic effect of the following factors: the powerful elongation capacity of TdT for single-stranded DNA (ssDNA) with 3-hydroxy terminus, the outstanding trans-cleavage ability of CRISPR/Cas14a specifcally activated by the crRNA binding to target DNA, and the excellent separation ability of MNPs, the developed electrochemical biosensor exhibited high sensitivity for the detection of NPC-derived exosome, with a linear range from 6.0 × 10 ∼ 1.

View Article and Find Full Text PDF

A novel method for detecting genetic biomarkers in blood-based liquid biopsies using surface plasmon resonance imaging and magnetic beads shows promise in cancer diagnosis and monitoring.

Talanta

January 2025

Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Roma, Italy. Electronic address:

Directly detecting biomarkers in liquid biopsy for diagnosis and personalized treatment plays a crucial role in managing cancer relapse and increasing survival rates. Typically, the standard analysis of circulating tumour DNA requires lengthy isolation, extraction, and amplification steps, leading to sample contamination, longer turnaround time and higher assay costs. Surface plasmon resonance is an emerging and promising technology for rapid and real-time dynamic biomarker monitoring in liquid biopsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!