Microfluidic human organ models, microphysiology systems (MPS), are currently being developed as predictive models of drug safety and efficacy in humans. To design and validate MPS as predictive of human safety liabilities requires safety data for a reference set of compounds, combined with data from the human organ models. To address this need, we have developed an internet database, the MPS database (MPS-Db), as a powerful platform for experimental design, data management, and analysis, and to combine experimental data with reference data, to enable computational modeling. The present study demonstrates the capability of the MPS-Db in early safety testing using a human liver MPS to relate the effects of tolcapone and entacapone in the model to human effects. These two compounds were chosen to be evaluated as a representative pair of marketed drugs because they are structurally similar, have the same target, and were found safe or had an acceptable risk in preclinical and clinical trials, yet tolcapone induced unacceptable levels of hepatotoxicity while entacapone was found to be safe. Results demonstrate the utility of the MPS-Db as an essential resource for relating organ model data to the multiple biochemical, preclinical, and clinical data sources on drug effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119471 | PMC |
http://dx.doi.org/10.1089/aivt.2016.0011 | DOI Listing |
Int J Surg
January 2025
Department of Surgery, Virgen del Rocio University Hospital, Seville, Spain.
Pancreatic surgery is considered one of the most challenging interventions by many surgeons, mainly due to retroperitoneal location and proximity to key and delicate vascular structures. These factors make pancreatic resection a demanding procedure, with successful rates far from optimal and frequent postoperative complications. Surgical planning is essential to improve patient outcomes, and in this regard, many technological advances made in the last few years have proven to be extremely useful in medical fields.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
Phytoplankton are diverse photosynthetic organisms in estuarine ecosystems and sensitive indicators of environmental changes. This study employed Generalized Additive Model (GAM) to explore the impact of environmental variables on the abundance of six dominant phytoplankton species in the tropical Karanja estuary, India. Data were collected from five sampling stations between January 2022 and March 2023.
View Article and Find Full Text PDFIntensive Care Med
January 2025
Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Purpose: Major cardiovascular surgery imposes high physiologic stress, often causing severe organ dysfunction and poor outcomes. The underlying mechanisms remain unclear. This study investigated metabolic changes induced by major cardiovascular surgery and the potential role of identified metabolic signatures in postoperative acute kidney injury (AKI).
View Article and Find Full Text PDFXenotransplantation
January 2025
Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA.
Background: The removal of preformed antibodies with cleaving enzyme like IdeS (Imlifidase) has demonstrated therapeutic potential in organ transplantation for sensitized recipients. However, preformed xenoreactive antibodies (XAbs) against porcine glycans are predominantly IgM and considered detrimental in pig-to-human xenotransplantation.
Methods: Recombinant IceM, an endopeptidase cleaving IgM, was generated in Escherichia coli.
Microbiol Spectr
January 2025
Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.
Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!