Effective vaccines are urgently needed to combat gonorrhea, a common sexually transmitted bacterial infection, for which treatment options are diminishing due to rapid emergence of antibiotic resistance. We have used a rational approach to the development of gonorrhea vaccines, and genetically engineered nanoparticles to present antigenic peptides of , the causative agent of gonorrhea. We hypothesized that the ferritin nanocage could be used as a platform to display an ordered array of antigenic peptides on its surface. MtrE, the outer membrane channel of the highly conserved gonococcal MtrCDE active efflux pump, is an attractive vaccine target due to its importance in protecting from host innate effectors and antibiotic resistance. Using computational approaches, we designed constructs that expressed chimeric proteins of the ferritin and antigenic peptides that correspond to the two surface-exposed loops of MtrE. The peptides were inserted at the N terminus or in a surface-exposed ferritin loop between helices αA and αB. Crystal structures of the chimeric proteins revealed that the proteins assembled correctly into a 24-mer nanocage structure. Although the inserted peptides were disordered, it was clear that they were displayed on the nanocage surface, but with multiple conformations. Our results confirmed that the ferritin nanoparticle is a robust platform to present antigenic peptides and therefore an ideal system for rational design of immunogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537070 | PMC |
http://dx.doi.org/10.1002/2211-5463.12267 | DOI Listing |
Genomics Proteomics Bioinformatics
January 2025
Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast malignancy. Although some patients benefit from immune checkpoint therapy, current treatment methods rely mainly on chemotherapy. It is imperative to develop predictors of efficacy and identify individuals who will be sensitive to particular treatment regimens.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Program of Cell and Gene Therapy, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.
Antigen recognition by CD8+ T-cell receptors (TCR) is crucial for immune responses to pathogens and tumors. TCRs are cross-reactive, a single TCR can recognize multiple peptide-Human Leukocyte Antigen (HLA) complexes. The study of cross-reactivity can support the development of therapies focusing on immune modulation, such as the expansion of pre-existing T-cell clones to fight pathogens and tumors.
View Article and Find Full Text PDFAccurate modeling of the structures of protein-protein complexes and other biomolecular interactions represents a longstanding and important challenge for computational biology. The Critical Assessment of PRedicted Interactions (CAPRI) experiment has served for over two decades as a key means to assess and compare current approaches and methods through blind predictive scenarios, highlighting useful strategies, and new developments. Here we describe the performance of our laboratory's team in recent CAPRI rounds, which included submissions for 10 modeling targets.
View Article and Find Full Text PDFExp Biol Med (Maywood)
January 2025
West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.
Malaria causes significant morbidity and mortality worldwide, disproportionately impacting sub-Saharan Africa. Disease phenotypes associated with infection can vary widely, from asymptomatic to life-threatening. To date, prevention efforts, particularly those related to vaccine development, have been hindered by an incomplete understanding of which factors impact host immune responses resulting in these divergent outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!