(Selaginellaceae): A new spikemoss species from southern China and northern Vietnam around the Gulf of Tonkin.

PhytoKeys

State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Published: May 2017

(Selaginellaceae), a new species of spikemoss from southern China and northern Vietnam around the Gulf of Tonkin (Beibu Gulf), is described and illustrated. Morphological and molecular comparisons of the new species with other similar species (, and ) are provided. The morphological and molecular evidence clearly indicates is a distinct species. Morphologically differs from other species by its obviously white-margined leaves, the ventral leaves scabrous on upper surfaces throughout the basiscopic or also rarely present on upper halves, and the ovate axillary leaves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543269PMC
http://dx.doi.org/10.3897/phytokeys.80.11126DOI Listing

Publication Analysis

Top Keywords

southern china
8
china northern
8
northern vietnam
8
vietnam gulf
8
gulf tonkin
8
morphological molecular
8
species
6
selaginellaceae spikemoss
4
spikemoss species
4
species southern
4

Similar Publications

The potential function of chalcone isomerase (CHI) gene on flavonoid accumulation in Amomum tsao-ko fruit by transcriptome and metabolome.

Int J Biol Macromol

January 2025

Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China. Electronic address:

Flavonoids are the major medicinally active ingredients that exert potential effects in Amomum tsao-ko. In total, 277 flavonoid metabolites were identified in fresh and dried fruits of three different accessions of A. tsao-ko (Amomum tsao-ko), which could be classified into eight classes with more metabolites classified as flavonol.

View Article and Find Full Text PDF

The hidden weavers: A review of DNA/RNA R-loops in stem cell biology and therapeutic potential.

Int J Biol Macromol

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China. Electronic address:

R-loops, three-stranded nucleic acid structures composed of RNA-DNA hybrids, are increasingly recognized as central regulators of genomic stability and transcription. These structures play critical roles across various cellular processes, including DNA replication, repair, and gene regulation, with significant implications for stem cell biology and disease pathogenesis. This review comprehensively explores the molecular underpinnings of R-loop formation, emphasizing the dual nature of R-loops in both facilitating normal cellular functions and contributing to genomic instability.

View Article and Find Full Text PDF

UGP2, a novel target gene of TP53, inhibits endothelial cells apoptosis and atherosclerosis.

Life Sci

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:

The dysfunction of the endothelial lining in lesion-prone areas of the arterial vasculature significantly contributes to the pathobiology of atherosclerotic cardiovascular disease. Recent studies suggested that UDP-glucose pyrophosphorylase 2 (UGP2) plays a role in cell proliferation and survival. This study investigates the anti-apoptotic and anti-atherogenic effects of UGP2 both in vitro and in vivo.

View Article and Find Full Text PDF

Pediatric high-grade gliomas (pHGGs) are the most common brain malignancies in children and are characterized by blocked differentiation. The epigenetic landscape of pHGGs, particularly the H3K27-altered and H3G34-mutant subtypes, suggests these tumors may be particularly susceptible to strategies that target blocked differentiation. Differentiation therapy aims to overcome this differentiation blockade by promoting glioma cell differentiation into more mature and less malignant cells.

View Article and Find Full Text PDF

Targeted deaminase-free T-to-G and C-to-K base editing in rice by fused human uracil DNA glycosylase variants.

Plant Biotechnol J

January 2025

Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), and Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!