Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C.

Cell Chem Biol

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Published: August 2017

Targeted covalent small molecules have shown promise for cancers driven by KRAS G12C. Allosteric compounds that access an inducible pocket formed by movement of a dynamic structural element in KRAS, switch II, have been reported, but these compounds require further optimization to enable their advancement into clinical development. We demonstrate that covalent quinazoline-based switch II pocket (SIIP) compounds effectively suppress GTP loading of KRAS G12C, MAPK phosphorylation, and the growth of cancer cells harboring G12C. Notably we find that adding an amide substituent to the quinazoline scaffold allows additional interactions with KRAS G12C, and remarkably increases the labeling efficiency, potency, and selectivity of KRAS G12C inhibitors. Structural studies using X-ray crystallography reveal a new conformation of SIIP and key interactions made by substituents located at the quinazoline 2-, 4-, and 7-positions. Optimized lead compounds in the quinazoline series selectively inhibit KRAS G12C-dependent signaling and cancer cell growth at sub-micromolar concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2017.06.017DOI Listing

Publication Analysis

Top Keywords

kras g12c
20
kras
7
g12c
6
potent selective
4
selective covalent
4
quinazoline
4
covalent quinazoline
4
quinazoline inhibitors
4
inhibitors kras
4
g12c targeted
4

Similar Publications

Decoding KRAS mutation in non-small cell lung cancer patients receiving immunotherapy: A retrospective institutional comparison and literature review.

Lung Cancer

December 2024

Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Electronics, Information and Bioengineering, Polytechnic University of Milan, Milan, Italy.

Introduction: KRAS mutation the most common molecular alteration in advanced non-small cell lung cancer (NSCLC) and is associated with an unfavourable prognosis, largely due to the lack of targeted therapeutic options for the majority of the KRAS mutated isoforms. The landscape of NSCLC treatment has expanded with the introduction of immune checkpoint inhibitors (ICIs). Nonetheless, data regarding the efficacy of ICI in NSCLC patients harbouring KRAS mutations are conflicting.

View Article and Find Full Text PDF

Analysis of outcomes in resected early-stage NSCLC with rare targetable driver mutations.

Ther Adv Med Oncol

December 2024

Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), 700 University Avenue, 7-812, Toronto, ON M5G 2M9, Canada.

Background: Given advancements in adjuvant treatments for non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK)-targeted therapies, it is important to consider postoperative targeted therapies for other early-stage oncogene-addicted NSCLC. Exploring baseline outcomes for early-stage NSCLC with these rare mutations is crucial.

Objectives: This study aims to assess relapse-free survival (RFS) and overall survival (OS) in patients with resected early-stage NSCLC with rare targetable driver mutations.

View Article and Find Full Text PDF

KRAS inhibitors: resistance drivers and combinatorial strategies.

Trends Cancer

December 2024

Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRAS inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively.

View Article and Find Full Text PDF

WEE1 confers resistance to KRAS inhibitors in non-small cell lung cancer.

Cancer Lett

December 2024

Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan. Electronic address:

KRAS inhibitors sotorasib and adagrasib have been approved for the treatment of KRAS-mutant non-small cell lung cancer (NSCLC). However, the efficacy of single-agent treatments is limited, presumably due to multiple resistance mechanisms. To overcome these therapeutic limitations, combination strategies that potentiate the antitumor efficacy of KRAS inhibitors must be developed.

View Article and Find Full Text PDF

KRAS is the most frequently mutated oncogene in lung adenocarcinoma, with G12C and G12V being the most predominant forms. Recent breakthroughs in KRASG12C inhibitors have transformed the clinical management of patients with G12C mutation and advanced our understanding of its function. However, little is known about the targeted disruption of KRASG12V, partly due to a lack of specific inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!