To better understand the mechanism of photodynamic cardiac ablation, we studied the effects of a photosensitization reaction (PR) performed during the first 3 min after rat myocardial cells were exposed to talaporfin sodium. A 3-mm-square microelectrode array with 64 electrodes was used to continuously measure the action potentials of the myocardial cells. A 30 μg/mL talaporfin sodium solution, a chlorine photosensitizer, was used, along with a 663-nm red diode laser (86 mW/cm for up to 600 s). The first trough of the measured action potential waveform corresponding to Na dynamics decreased exponentially with increasing PR duration. The average decay time of the exponential function from PR onset was 20.1 s. Marked morphological changes in the myocardial cells was observed after the PR. These results indicated that the behavior of the action potential waveform measured by the microelectrode array might be used as a less invasive method to evaluate the electrophysiological effects of a PR on myocardial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10103-017-2298-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!