Purification, characterization and antioxidant properties of a novel polysaccharide extracted from Sorghum bicolor (L.) seeds in sausage.

Int J Biol Macromol

Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia. Electronic address:

Published: January 2018

A novel polysaccharide named Sorghum Water-Soluble Polysaccharide (SWSP) was purified from Sorghum bicolor (L.) seeds. It was structurally characterized by high performance liquid chromatography (HPLC), thin layer chromatography (TLC), Fourier transform-infrared spectroscopy analysis (FT-IR), X-ray diffraction (XRD) and mass spectroscopy (MS). HPLC and TLC showed that SWSP is a glucose polymer. The FT-IR spectrum proved the polysaccharide characteristic band of SWSP. XRD and microscopy analyses revealed that SWSP is a semi-crystalline polymer. Functional properties of SWSP were determined based on Water Holding Capacity (WHC), Oil Holding Capacity (OHC) and emulsification properties. SWSP showed good WHC and OHC, recorded at 3.01±0.03 and 1.02±0.03g/g, respectively and exhibited excellent emulsion properties even after 168h (61.5±0.02%). The effect of SWSP on oxidative stability of sausage during storage up to 12days at 4°C was investigated. Results showed a high rate (P<0.05) of oxymyoglobin and low lipid oxidation. The antioxidant activities of SWSP were also studied in vitro. Results demonstrated that the polysaccharides exhibited interesting 1,1-diphenyl-2-picrylhydrazyl (DPPH), ABTS radical scavenging, and ß-carotene bleaching inhibition activities. Overall, this natural polysaccharide was proved to enhance the oxidation stability of sausages, since it can efficiently substitute synthetic antioxidants in meat industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2017.08.010DOI Listing

Publication Analysis

Top Keywords

novel polysaccharide
8
sorghum bicolor
8
bicolor seeds
8
properties swsp
8
holding capacity
8
swsp
7
purification characterization
4
characterization antioxidant
4
properties
4
antioxidant properties
4

Similar Publications

Chemical modification of naturally derived glycosaminoglycans (GAGs) expands their potential utility for applications in soft tissue repair and regenerative medicine. Here we report the preparation of a novel crosslinked chondroitin sulfate (~200 to 2000 kilodaltons) that is both soluble in aqueous solution and microfilterable. We refer to these materials as "SuperGAGs.

View Article and Find Full Text PDF

Long COVID and gut microbiome: insights into pathogenesis and therapeutics.

Gut Microbes

December 2025

Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.

Post-acute coronavirus disease 2019 syndrome (PACS), following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (COVID-19), is typically characterized by long-term debilitating symptoms affecting multiple organs and systems. Unfortunately, there is currently a lack of effective treatment strategies. Altered gut microbiome has been proposed as one of the plausible mechanisms involved in the pathogenesis of PACS; extensive studies have emerged to bridge the gap between the persistent symptoms and the dysbiosis of gut microbiome.

View Article and Find Full Text PDF

Chitosan, a multifaceted amino polysaccharide biopolymer derived from chitin, has extensive antibacterial efficacy against diverse pathogenic microorganisms, including both Gram-negative and Gram-positive bacteria, in addition to fungi. Over the course of the last several decades, chitosan nanoparticles (NPs), which are polymeric and bio-based, have garnered a great deal of interest as efficient antibacterial agents. This is mostly due to the fact that they are used in a wide variety of applications, including medical treatments, food, chemicals, and agricultural products.

View Article and Find Full Text PDF

Hybrid Hydrogel Supplemented with Algal Polysaccharide for Potential Use in Biomedical Applications.

Gels

December 2024

Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030016 Bucharest, Romania.

Hydrogels are a viable option for biomedical applications due to their biocompatibility, biodegradability, and ability to incorporate various healing agents while maintaining their biological efficacy. This study focused on the preparation and characterization of novel hybrid hydrogels enriched with the natural algae compound Ulvan for potential use in wound dressings. The characterization of the hydrogel membranes involved multiple methods to assess their structural, mechanical, and chemical properties, such as pH measurements, swelling, moisture content and uptake, gel fraction, hydrolytic degradation, protein adsorption and denaturation tests, rheological measurements, SEM, biocompatibility testing, and scratch wound assay.

View Article and Find Full Text PDF

Hyaluronan (HA) levels are dynamically regulated homeostatically through biosynthesis and degradation. HA homeostasis is often perturbed under disease conditions. HA degradation products are thought to contribute to disease pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!