Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics.

Water Res

Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, 2052, Australia. Electronic address:

Published: November 2017

AI Article Synopsis

  • Iron salts are used in wastewater treatment to reach specific phosphorus levels, and the resulting iron oxides undergo various chemical reactions that are influenced by their formation conditions and the presence of organic compounds.
  • This study examined the reactivity and aging of amorphous ferric oxide (AFO) after adding ferric iron to different solution systems, including one with alginate and another with soluble microbial products (SMPs) from a membrane bioreactor.
  • Results showed that AFO particles were stabilized against aggregation in the alginate system, while in the SMP system, a diverse range of Fe(III) phases appeared, indicating that low molecular weight organic molecules helped stabilize the iron oxyhydroxides formed.

Article Abstract

Iron salts are routinely dosed in wastewater treatment as a means of achieving effluent phosphorous concentration goals. The iron oxides that result from addition of iron salts partake in various reactions, including reductive dissolution and phosphate adsorption. The reactivity of these oxides is controlled by the conditions of formation and the processes, such as aggregation, that lead to a reduction in accessible surface sites following formation. The presence of organic compounds is expected to significantly impact these processes in a number of ways. In this study, amorphous ferric oxide (AFO) reactivity and aging was investigated following the addition of ferric iron (Fe(III)) to three solution systems: two synthetic buffered systems, either containing no organic or containing alginate, and a supernatant system containing soluble microbial products (SMPs) sourced from a membrane bioreactor (MBR). Reactivity of the Fe(III) phases in these systems at various times (1-60 min) following Fe(III) addition was quantified by determining the rate constants for ascorbate-mediated reductive dissolution over short (5 min) and long (60 min) dissolution periods and for a range (0.5-10 mM) of ascorbate concentrations. AFO particle size was monitored using dynamic light scattering during the aging and dissolution periods. In the presence of alginate, AFO particles appeared to be stabilized against aggregation. However, aging in the alginate system was remarkably similar to the inorganic system where aging is associated with aggregation. An aging mechanism involving restructuring within the alginate-AFO assemblage was proposed. In the presence of SMPs, a greater diversity of Fe(III) phases was evident with both a small labile pool of organically complexed Fe(III) and a polydisperse population of stabilized AFO particles present. The prevalence of low molecular weight organic molecules facilitated stabilization of the Fe(III) oxyhydroxides formed but subsequent aging observed in the alginate system did not occur. The reactivity of the Fe(III) in the supernatant system was maintained with little loss in reactivity over at least 24 h. The capacity of SMPs to maintain high reactivity of AFO has important implications in a reactor where Fe(III) phases encounter alternating redox conditions due to sludge recirculation, creating a cycle of reductive dissolution, oxidation and precipitation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2017.07.076DOI Listing

Publication Analysis

Top Keywords

reductive dissolution
12
feiii phases
12
reactivity aging
8
amorphous ferric
8
membrane bioreactor
8
iron salts
8
feiii
8
supernatant system
8
reactivity feiii
8
dissolution periods
8

Similar Publications

Controlled-release microparticles offer a promising avenue for enhancing patient compliance and minimizing dosage frequency. In this study, we aimed to design controlled-release microparticles of Glipizide utilizing Eudragit S100 and Methocel K 100 M polymers as controlling agents. The microparticles were fabricated through a simple solvent evaporation method, employing various drug-to-polymer ratios to formulate different controlled-release batches labeled as F1 to F5.

View Article and Find Full Text PDF

Contained arsenic (As) and unsafe brackish groundwater irrigation can lead to serious As pollution and increase the ecological risk in cultivated soils. However, little is known about how Fe oxides and microbes affect As migration during soil irrigation processes involving arsenic-contaminated brackish groundwater. In this study, the samples (porewater and soil) were collected through the dynamic soil column experiments to explore the As migration process and its effect factors during soil irrigation.

View Article and Find Full Text PDF

Critical source areas (CSAs) can act as a source of phosphorus (P) during intermittent rainfall events and contribute to dissolved P loss via runoff. Dissolved forms of P are readily accessible for plant and algal uptake; hence it is a concern in terms of the eutrophication of freshwater bodies. The potential of CSAs to release dissolved P to surface runoff upon intermittent short-term submergence caused by different rainfall events has not been studied at a field-scale in New Zealand previously.

View Article and Find Full Text PDF

Naturally widespread ferrihydrite is unstable and often coexists with complex ions, such as the heavy metal ion Pb(II). Ferrihydrite could fix Pb(II) by precipitation and hydroxyl adsorption, but release Pb(II) with mineral aging. Gallic acid plays an important role in influencing the geochemical behavior of ferrihydrite-Pb, and anoxia is one of the factors influencing the transformation of mineral.

View Article and Find Full Text PDF

Reductive dechlorination of trichloroethene at concentrations approaching saturation by a Desulfitobacterium-containing community.

J Hazard Mater

December 2024

School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China; State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment,  Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China. Electronic address:

In dense nonaqueous phase liquid (DNAPL) contaminant source zones, aqueous concentrations of trichloroethene (TCE) in groundwater may approach saturation levels (8.4 mM). It is generally believed that such saturation concentrations are toxic to organohalide-respiring bacteria (OHRB), thus limiting the effectiveness of bioremediation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!