The thermokinetics of Chlorella pyrenoidosa (CP) devolatilization were investigated based on iso-conversional model and different distributed activation energy models (DAEM). Iso-conversional process result showed that CP devolatilization roughly followed a single-step with mechanism function of f(α)=(1-α), and kinetic parameters pair of E=180.5kJ/mol and A=1.5E+13s. Logistic distribution was the most suitable activation energy distribution function for CP devolatilization. Although reaction order n=3.3 was in accordance with iso-conversional process, Logistic DAEM could not detail the weight loss features since it presented as single-step reaction. The un-uniform feature of activation energy distribution in Miura-Maki DAEM, and weight fraction distribution in discrete DAEM reflected weight loss features. Due to the un-uniform distribution of activation and weight fraction, Miura-Maki DAEM and discreted DAEM could describe weight loss features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2017.07.144 | DOI Listing |
Comput Biol Med
January 2025
Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, 54714, Mexico. Electronic address:
Bacterial resistance is a global public health problem because of the ineffectiveness of conventional antibiotics against super pathogens. To counter this situation, the search for or design of new molecules is essential to inhibit the key proteins involved in several stages of bacterial infection. One of these key proteins is DNA gyrase, which is responsible for packaging and unfolding of DNA chains during replication.
View Article and Find Full Text PDFNano Lett
January 2025
School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin University, Tianjin 300072, P. R. China.
Molybdenum disulfide (MoS) is a promising anode for sodium-ion batteries (SIBs) due to its high theoretical capacity and layered structure. However, a poor reversible conversion reaction and a low initial Coulombic efficiency (ICE) limit its practical application. This study systematically investigated the potential of pre-intercalated sodium ions molybdenum disulfide (Na-MoS) as an anode material for SIBs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
National Center for Nanoscience and Technology, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China.
The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Hyperpolarized-C magnetic resonance imaging (HP-C MRI) was used to image changes in C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain C-pyruvate, C-lactate and C-bicarbonate production was imaged in healthy volunteers (N = 6, ages 24-33) for the two conditions using two separate hyperpolarized C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of Patras, Patras 26504, Greece.
Energy-efficient separation of light alkanes from alkenes is considered as one of the most important separations of the chemical industry today due to the high energy penalty associated with the applied conventional cryogenic technologies. This study introduces fluorine-doped activated carbon adsorbents, where elemental fluorine incorporation into the carbon matrix plays a unique role in achieving high ethane selectivity. This enhanced selectivity arises from specific interactions between surface-doped fluorine atoms and ethane molecules, coupled with porosity modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!