Vaccine efficacy against Indonesian Highly Pathogenic Avian Influenza H5N1: systematic review and meta-analysis.

Vaccine

Modelling and Simulation Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia; Victorian Infectious Disease Reference Laboratory, The Royal Melbourne Hospital and The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.

Published: September 2017

Indonesia has implemented multiple strategies to control Highly Pathogenic Avian Influenza H5N1 (HPAI/H5N1), including the licensure and use of multiple vaccine formulations. The continuous drift of Indonesian HPAI/H5N1 viruses and emergence of a new clade in 2012 that became dominant in 2016, demands the assessment of commercial vaccine formulations against Indonesian field viruses. Seven databases were explored to identify relevant literature reporting performance of commercial vaccines against Indonesian HPAI/H5N1 viruses. After methodological assessment, data were collated and analyzed to report immunogenicity and vaccine efficacy (VE) to prevent respiratory and cloacal viral shedding 2-day post challenge, and death at the end of the follow-up period. Meta-analyses were performed to assess VE consistency of alternative formulations and to explore sources of heterogeneity in VE. In total, 65 studies and 46 vaccine formulations from 13 articles were grouped per OIE's VE protocols (group 1) and variations of it (groups 2,3,4). We found that concurrence of vaccine-seed and challenge-viruses in a clade designation might be a better proxy of VE than current estimates based on vaccine-homologous HI antibody titers, particularly against current fourth order clade viruses (groups 1&2). Prime-boosting was efficacious across different chicken breeds (group 3), and early vaccination may increase the risk of death (group 4). One Indonesian vaccine was tested against the new dominant clade, conferring consistent protection in chickens but not in ducks. Meta-analyses revealed high inconsistency (I≥75%) and inefficacy of LPAI formulations against current field viruses, while potential sources of inconsistent VE were formulation of seed-homologous vaccines and the species vaccinated. We conclude that the VE of commercial vaccines in Indonesia changes as Indonesian HPAI/H5N1 evolve into new clades, which should warrant continuous matching between vaccine-seeds and emerging HPAI/H5N1. Furthermore, given the characteristics of the new Indonesian dominant HPAI/H5N1 clade, further studies to confirm VE across species are warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2017.07.059DOI Listing

Publication Analysis

Top Keywords

vaccine formulations
12
indonesian hpai/h5n1
12
vaccine efficacy
8
highly pathogenic
8
pathogenic avian
8
avian influenza
8
influenza h5n1
8
hpai/h5n1 viruses
8
field viruses
8
commercial vaccines
8

Similar Publications

The significance of vaccine development has gained heightened importance in light of the pandemic. In such critical circumstances, global citizens anticipate researchers in this field to swiftly identify a vaccine candidate to combat the pandemic's root cause. It is widely recognized that the vaccine design process is traditionally both time-consuming and costly.

View Article and Find Full Text PDF

By evaluating the stability profiles of each component of a vaccine candidate (antigens, adjuvants), formulation conditions to mitigate vaccine instability can be identified. In this work, two recombinant Cytomegalovirus (CMV) glycoprotein antigens (gB, Pentamer) were formulated with SPA14, a novel liposome-based adjuvant system containing a synthetic TLR4 agonist (E6020) and a saponin (QS21). Analytical characterization and accelerated stability studies were performed with the two CMV antigens, formulated with and without SPA14, under various conditions (temperature, pH, excipients).

View Article and Find Full Text PDF

Subphenotypes of Long COVID and the clinical applications of probiotics.

Biomed Pharmacother

January 2025

School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia. Electronic address:

As the number of infections and deaths attributable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to rise, it is now becoming apparent that the health impacts of the Coronavirus disease (COVID-19) may not be limited to infection and the subsequent resolution of symptoms. Reports have shown that patients with SARS-CoV-2 infection may experience multiple symptoms across different organ systems that are associated with adverse health outcomes and develop new cardiac, renal, respiratory, musculoskeletal, and nervous conditions, a condition known as Long COVID or the post-acute sequelae of COVID-19 (PASC). This review provides insights into distinct subphenotypes of Long COVID and identifies microbiota dysbiosis as a common theme and crucial target for future therapies.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major concern for swine health. Isolating PRRSV is essential for identifying infectious viruses and for vaccine formulation. This study evaluated the potential of using tongue fluid (TF) from perinatal piglet mortalities for PRRSV isolation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!