Milk yield has a strong effect on fertility, but it may vary across different herds and individual cows. Therefore, the aim of this study was to assess the effects of breed and its interaction with level of milk production at the herd level (Herd-L) and at a cow-within-herd level (Cow-L) on fertility traits in dairy cattle. Data were gathered from Holstein (n = 17,688), Brown Swiss (n = 32,697), Simmental (n = 27,791), and Alpine Grey (n = 13,689) cows in northeastern Italy. The analysis was based on records from the first 3 lactations in the years 2011 to 2014. A mixed model was fitted to establish milk production levels of the various herds (Herd-L) and individual cows (Cow-L) using milk as a response variable. The interval fertility traits were interval from calving to first service, interval from first service to conception, and number of days open. The success traits were nonreturn rate at 56 d after first service, pregnancy rate at first service, and the number of inseminations. The interval from calving to first service, interval from first service to conception, and number of days open were analyzed using a Cox's proportional hazards model. The nonreturn rate at 56 d after first service, pregnancy rate at first service, and the number of inseminations were analyzed using logistic regression. There was a strong interaction between breed and productivity class at both Herd-L and Cow-L on all traits. The effects of herd and cow productivity differed from each other and differed among breeds. The dual-purpose Simmental and Alpine Grey breeds had better fertility than the specialized Holstein and Brown Swiss dairy cows; this difference is only partly attributable to different milk yields. Greater herd productivity can result in higher fertility in cows, whereas higher milk yield of individual cows within a herd results in lower fertility. These effects at both Herd-L and Cow-L are curvilinear and are stronger in dual-purpose breeds, which was more evident from low to intermediate milk yield levels than from central to high productivity classes. Disentangling the effects of milk productivity on fertility at Herd-L and Cow-L and taking the nonlinearity of response into account could lead to better modeling of populations within breed. It could also help with management-for example, in precision dairy farming of dairy and dual-purpose cattle. Moreover, assessing the fertility of various breeds and their different responses to herd and individual productivity levels could be useful in devising more profitable crossbreeding programs in different dairy systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2016-12442 | DOI Listing |
Genet Sel Evol
January 2025
GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France.
Background: The magnitude of inbreeding depression depends on the recessive burden of the individual, which can be traced back to the hidden (recessive) inbreeding load among ancestors. However, these ancestors carry different alleles at potentially deleterious loci and therefore there is individual variability of this inbreeding load. Estimation of the additive genetic value for inbreeding load is possible using a decomposition of inbreeding in partial inbreeding components due to ancestors.
View Article and Find Full Text PDFAnimal
December 2024
Department of Ruminant Science, Institute of Animal Science, Agricultural Research Organization, Rishon Lezion 7528809, Israel. Electronic address:
Use of desalinated seawater in arid and semiarid regions for domestic, industrial, and agricultural purposes is on the rise. Consequently, in those regions, drinking water offered to lactating cows has lower salinity and mineral concentrations than in the past. Although water with total dissolved solids (TDSs) of up to 1 000 ppm is considered safe for drinking, lower salinity level may affect rumen physiology, feed and water intake, or milk yield.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Animal Production, Faculty of Agriculture, Menoufia University, Shibin Al Kawm, Egypt.
This article aims to explore milking-ability criteria of Holstein dairy cattle under intensive production system in Egypt and investigate some managerial factors that influence them in dairy farms. The data obtained from five herds belong to a commercial intensive production system farm, Egypt. Data included 3509 records.
View Article and Find Full Text PDFNutrients
December 2024
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye.
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
Telomere length (TL) has gained attention as a biomarker for longevity and productivity in dairy cattle. This study explored the association between neonatal TL in Holstein calves and lifetime parameters (lifespan, milk production, and reproduction). Blood samples were collected from 210 calves (≤10d old) across four dairy farms in Flanders, Belgium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!