Prevalence and characterization of methicillin-resistant Staphylococcus aureus carrying mecA or mecC and methicillin-susceptible Staphylococcus aureus in dairy sheep farms in central Italy.

J Dairy Sci

General Diagnostic Department, National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri" Via Appia Nuova 1411, 00178 Rome, Italy. Electronic address:

Published: October 2017

Between January and May 2012, a total of 286 bulk tank milk samples from dairy sheep farms located in central Italy were tested for the presence of Staphylococcus aureus. One hundred fifty-three samples were positive for S. aureus (53.5%), with an average count of 2.53 log cfu/mL. A total of 679 S. aureus colonies were screened for methicillin resistance by the cefoxitin disk diffusion test, and 104 selected cefoxitin-susceptible isolates were also tested for their susceptibility to other antimicrobials representative of the most relevant classes active against Staphylococcus spp. by using the Kirby-Bauer disk diffusion method. Two methicillin-resistant Staphylococcus aureus (MRSA) isolates, carrying respectively the mecA and the mecC genes, were detected in 2 samples from 2 different farms (prevalence 0.7%). The mecA-positive MRSA isolate was blaZ positive, belonged to spa type t127, sequence type (ST)1, clonal complex (CC)1, carried a staphylococcal cassette chromosome mec (SCCmec) type IVa, and was phenotypically resistant to all the β-lactams tested and to erythromycin, streptomycin, kanamycin, and tetracycline. The mecC-positive MRSA isolate was negative for the chromosomally or plasmid-associated blaZ gene but positive for the blaZ allotype associated with SCCmec XI (blaZ-SCCmecXI), belonged to spa type 843, ST(CC)130, carried a SCCmec type XI, and was resistant only to β-lactams. Both MRSA were negative for the presence of specific immune-evasion and virulence genes such as those coding for the Panton-Valentine leucocidin, the toxic shock syndrome toxin 1, and the immune evasion cluster genes. Regarding the presence of the major S. aureus enterotoxin genes, the mecC-positive MRSA tested negative, whereas the ST (CC)1 mecA-positive MRSA harbored the seh gene. Among the 104 methicillin-susceptible S. aureus isolates examined for antimicrobial susceptibility, 63 (60.58%) were susceptible to all the antimicrobials tested, and 41 (39.42%) were resistant to at least 1 antimicrobial. In particular, 23 isolates (22.12%) were resistant to tetracycline, 16 (15.38%) to sulfonomides, 14 (13.46%) to trimethoprim and sulfamethoxazole, and 9 (8.65%) to ampicillin, whereas only 1 isolate was resistant to both fluoroquinolones and aminoglycosides. The high prevalence of S. aureus found in bulk tank milk samples and the isolation of MRSA, although at a low prevalence, underlines the importance of adopting control measures against S. aureus in dairy sheep farms to minimize the risks for animal and public health. Moreover, this study represents the first report of mecC-positive MRSA isolation in Italy and would confirm that, among livestock animals, sheep might act as a mecC-MRSA reservoir. Although this lineage seems to be rare in dairy sheep (0.35% of farms tested), because mecC-positive MRSA are difficult to detect by diagnostic routine methods employed for mecA-positive livestock-associated MRSA, diagnostic laboratories should be aware of the importance of searching for the mecC gene in all the mecA-negative S. aureus isolates displaying resistance to oxacillin, cefoxitin, or both.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2017-12940DOI Listing

Publication Analysis

Top Keywords

staphylococcus aureus
16
dairy sheep
16
mecc-positive mrsa
16
sheep farms
12
aureus
11
mrsa
10
methicillin-resistant staphylococcus
8
carrying meca
8
meca mecc
8
aureus dairy
8

Similar Publications

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

Antibacterial screening of endophytic fungi from Salacia intermedia identified Diaporthe longicolla as a potent strain exhibiting good activity against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa, with an MIC of 39.1 µg/mL. Scale-up fermentation and chromatographic purification of this strain yielded three known compounds, which were cytochalasin J (1), cytochalasin H (2), and dicerandrol C (3), as identified by liquid chromatography - high mass resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Bacterial biofilms are surface-attached communities consisting of non-replicating persister cells encased within an extracellular matrix of biomolecules. Unlike bacteria that have acquired resistance to antibiotics, persister cells enable biofilms to demonstrate innate tolerance toward all classes of conventional antibiotic therapies. It is estimated that 50-80% of bacterial infections are biofilm associated, which is considered the underlying cause of chronic and recurring infections.

View Article and Find Full Text PDF

While key for pathogen immobilization, neutrophil extracellular traps (NETs) often cause severe bystander cell/tissue damage. This was hypothesized to depend on their prolonged presence in the vasculature, leading to cytotoxicity. Imaging of NETs (histones, neutrophil elastase, extracellular DNA) with intravital microscopy in blood vessels of mouse livers in a pathogen-replicative-free environment (endotoxemia) led to detection of NET proteins attached to the endothelium for months despite the early disappearance of extracellular DNA.

View Article and Find Full Text PDF

TSST-1 promotes colonization of within the vaginal tract by activation of CD8 T cells.

Infect Immun

January 2025

Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.

Toxic shock syndrome toxin-1 (TSST-1) is a superantigen produced by and is the determinant of menstrual toxic shock syndrome (mTSS); however, the impact of TSST-1 on the vaginal environment beyond mTSS is not understood. Herein, we assessed how TSST-1 affects vaginal colonization by , host inflammatory responses, and changes in microbial communities within the murine vagina. We demonstrated that TSST-1 induced a CD8 T-cell-dependent inflammatory response in 24 h that correlated with persistence within the vaginal tract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!