Iron-salen, i.e., μ-oxo-N,N'-bis(salicylidene)ethylenediamine iron (Fe(Salen)) was a recently identified as a new anti-cancer compound with intrinsic magnetic properties. Chelation therapy has been widely used in management of metallic poisoning, because an administration of agents that bind metals can prevent potential lethal effects of particular metal. In this study, we confirmed the therapeutic effect of deferoxamine mesylate (DFO) chelation against Fe(Salen) as part of the chelator antidote efficacy. DFO administration resulted in reduced cytotoxicity and ROS generation by Fe(Salen) in cancer cells. DFO (25 mg/kg) reduced the onset of Fe(Salen) (25 mg/kg)-induced acute liver and renal dysfunction. DFO (300 mg/kg) improves survival rate after systematic injection of a fatal dose of Fe(Salen) (200 mg/kg) in mice. DFO enables the use of higher Fe(Salen) doses to treat progressive states of cancer, and it also appears to decrease the acute side effects of Fe(Salen). This makes DFO a potential antidote candidate for Fe(Salen)-based cancer treatments, and this novel strategy could be widely used in minimally-invasive clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphs.2017.07.002DOI Listing

Publication Analysis

Top Keywords

fesalen
7
dfo
6
iron chelating
4
chelating agent
4
agent deferoxamine
4
deferoxamine detoxifies
4
detoxifies fesalen-induced
4
fesalen-induced cytotoxicity
4
cytotoxicity iron-salen
4
iron-salen μ-oxo-nn'-bissalicylideneethylenediamine
4

Similar Publications

The synthesis and characterization of novel compounds (5-8) as mimetics of [FeFe]-hydrogenase, combining two distinct systems capable of participating in hydrogen evolution reactions (HER): the [(μ-adt)Fe2(CO)6] fragment and M-salen complexes (salen = N,N'-bis(salicylidene)ethylenediamine) (M = Zn, Ni, Fe, Mn), is reported. These complexes were synthesized in high yields via a three-step procedure from N,N'-bis(4-R-salicylidene)ethanediamine) 4 [R = Fe2(CO)6(μ-SCH2)2COCH2O)]. Structural analysis through spectroscopic, spectrometric, and computational (DFT) methods confirmed distorted tetrahedral and square-planar geometries for Zn-salen and Ni-salen complexes (5 and 6) respectively, while complexes Fe-salen 7 and Mn-salen 8 exhibit square-based pyramidal structures typical of Fe(III) and Mn(III) high-spin salen-complexes.

View Article and Find Full Text PDF

A novel and efficient protocol for the microwave-assisted synthesis of diversely substituted 2,2'-bisbenzimidazol-5,6'-dicarboxylic acid (BIMCA) from the reaction of 3,4-diaminobenzoic acid with oxalic acid has been developed, which proceeds through sequential nucleophilic addition and electrophilic substitution in accordance with the Philips method. The synthetic utility of this strategy was demonstrated by the concise, one-pot synthesis of (BIMCA) and metal complexes. (BIMCA) with a [{Fe(salen)}O] Schiff base ligand complex and new benzimidazole coordination compounds with double oxygen [(BIMCA){Fe(salen)}] ligand complexes were obtained.

View Article and Find Full Text PDF

This research work is the first report on the synthesis and stabilization of [Fe-Salophen] and [Fe-Salen] complexes by two methods of surface modification and anchoring of synthesized Schiff base ligand on the surface of graphene quantum dots (GQDs). The GQDs contain oxygenated functional groups that can act as non-radiative electron-hole recombination centers. Therefore removing these oxygen functional groups may improve quantum yield by reducing or deactivating the surface.

View Article and Find Full Text PDF

Negative Thermal Expansion of Undulating Coordination Layers through Interlayer Interaction.

Inorg Chem

December 2022

Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan.

The negative thermal expansion (NTE) of solid-state materials is of significance in various fields, but a very rare phenomenon. In this study, we carried out a meta-analysis for the anisotropic thermal expansion behavior of fifteen two-dimensional coordination polymers [M(salen)][M'(CN)(solvent)] (M = Mn, Fe; M' = MnN, ReN, Pt, Pt(I); = 0.18, 0.

View Article and Find Full Text PDF

The application of an alkyne cyclotrimerization regime with an [Fe(salen)] -μ-oxo (1) catalyst to triphenylmethylphosphaalkyne (2) yields gram-scale quantities of 2,4,6-tris(triphenylmethyl)-Dewar-1,3,5-triphosphabenzene (3). Bulky lithium salt LiHMDS facilitates a rearrangement of 3 to the 1,3,5-triphosphabenzene valence isomer (3'), which subsequently undergoes an intriguing phosphorus migration reaction to form the ring-contracted species (3''). Density functional theory calculations provide a plausible mechanism for this rearrangement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!