FERMT3 contributes to glioblastoma cell proliferation and chemoresistance to temozolomide through integrin mediated Wnt signaling.

Neurosci Lett

Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing 163001, China; Department of Rehabilitation, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China. Electronic address:

Published: September 2017

FERMT3, also known as kindlin-3, is one of three kindlin family members expressed in mammals. Kindlins are cytosolic, adaptor proteins that are important activators and regulators of integrin function. They have also been shown to play critical roles in the development and progression of various cancers. In the present study, we hypothesized that FERMT3 would enhance glioblastoma multiforme (GBM) cell survival. Indeed, expression level analyses showed significant FERMT3 upregulation in human glioma tissues as compared to normal brain tissues. The effect was particularly pronounced in high-grade gliomas. We then demonstrated that FERMT3 knockdown suppresses glioma cell proliferation and chemoresistance to temozolomide (TMZ). To determine the mechanism by which FERMT3 enhances glioma cell proliferation and chemoresistance, we examined the effects of FERMT3 on integrin activation and Wnt/β-catenin signaling. Through the use of western blot assays and TOPflash and FOPflash plasmid transfection into glioma cells lines, we demonstrated that FERMT3 regulates glioma cell activity through integrin-mediated Wnt/β-catenin signaling. These results suggest that FERMT3 activates integrin activity in high-grade gliomas to enhance glioma cell survival and chemoresistance. The present study thus indicates a potential role for FERMT3 as a genetic target in the treatment of GBM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2017.07.057DOI Listing

Publication Analysis

Top Keywords

glioma cell
16
cell proliferation
12
proliferation chemoresistance
12
fermt3
10
chemoresistance temozolomide
8
signaling fermt3
8
cell survival
8
high-grade gliomas
8
demonstrated fermt3
8
wnt/β-catenin signaling
8

Similar Publications

Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.

View Article and Find Full Text PDF

Relationship between CTF1 gene expression and prognosis and tumor immune microenvironment in glioma.

Eur J Med Res

January 2025

Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.

Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.

Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.

View Article and Find Full Text PDF

Biopsy location and tumor-associated macrophages in predicting malignant glioma recurrence using an in-silico model.

NPJ Syst Biol Appl

January 2025

Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.

Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.

View Article and Find Full Text PDF

Glioma is the most common primary intracranial malignant tumor in adults, with a poor prognosis. Exosomes released by tumor cells play a crucial role in tumor development, metastasis, angiogenesis, and other biological processes. Despite this significance, the precise molecular mechanisms governing exosome secretion and their impact on tumor progression remain incompletely understood.

View Article and Find Full Text PDF

Gliomas are aggressive tumors with a poor prognosis. The protocols presented here outline the methods used to study tumor progression, the tumor microenvironment (TME), and the effects of experimental treatments. The Sleeping Beauty (SB) transposase system induces tumors de novo to generate mouse models that recapitulate human gliomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!