Seagrass meadows are important sites of nitrogen (N) transformations in estuaries, however, the role of N loading in driving relative rates of N fixation and denitrification in seagrass habitats is unclear. The current study quantified N fluxes in eelgrass meadows (Zostera marina (L.)) and nearby unvegetated sand in trials representing in situ and N enriched conditions. Net N fluxes were low or negative under in situ conditions in both eelgrass and sand. Under N enriched conditions, denitrification was higher than N-fixation, and denitrification in eelgrass was significantly higher than sand. Denitrification of water column NO was more significant than coupled nitrification-denitrification in the eelgrass. Denitrification was likely supported by greater organic carbon and N within the eelgrass sediment compared to sand. Eelgrass meadows in Shinnecock Bay may facilitate the ecosystem service of N removal and retention during short-term nutrient pulses that can originate from groundwater discharge and stormwater runoff.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2017.07.061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!