Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Artifacts are frequently encountered at clinical US, and while some are unwanted, others may reveal valuable information related to the structure and composition of the underlying tissue. They are essential in making ultrasonography (US) a clinically useful imaging modality but also can lead to errors in image interpretation and can obscure diagnoses. Many of these artifacts can be understood as deviations from the assumptions made in generating the image. Therefore, understanding the physical basis of US image formation is critical to understanding US artifacts and thus proper image interpretation. This review is limited to gray-scale artifacts and is organized into discussions of beam- and resolution-related, location-related (ie, path and speed), and attenuation-related artifacts. Specifically, artifacts discussed include those related to physical mechanisms of spatial resolution, speckle, secondary lobes, reflection and reverberation, refraction, speed of sound, and attenuation. The underlying physical mechanisms and appearances are discussed, followed by real-world strategies to mitigate or accentuate these artifacts, depending on the clinical application. Relatively new US modes, such as spatial compounding, tissue harmonic imaging, and speckle reduction imaging, are now often standard in many imaging protocols; the effects of these modes on US artifacts are discussed. The ability of a radiologist to understand the fundamental physics of ultrasound, recognize common US artifacts, and provide recommendations for altering the imaging technique is essential for proper image interpretation, troubleshooting, and utilization of the full potential of this modality. RSNA, 2017.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/rg.2017160175 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!