By application of newly designed ligand 5-(3-(pyridin-3-yl)benzamido)isophthalic acid (HPBI) to react with Mn(NO) under solvothermal conditions, a 2-fold interpenetrated Mn-based metal-organic framework (Mn-PBI) with rutile-type topology has been obtained. When treated as a precursor by pyrolysis of Mn-PBI at 500 °C, mesoporous MnO/C-N nanostructures were prepared and treated as an lithium-ion battery anode. The MnO/C-N manifests good capacity of approximately 1085 mAh g after 100 cycles together with superior cyclic stability and remarkable rate capacity, which is supposed to benefit from a large accessible specific area and unique nanostructures. The remarkable performances suggest promising application as an advanced anode material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.7b01486 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!