This work describes an improved algorithm for spectrophotometric determinations of seawater carbonate ion concentrations ([CO]) derived from observations of ultraviolet absorbance spectra in lead-enriched seawater. Quality-control assessments of [CO] data obtained on two NOAA research cruises (2012 and 2016) revealed a substantial intercruise difference in average Δ[CO] (the difference between a sample's [CO] value and the corresponding [CO] value calculated from paired measurements of pH and dissolved inorganic carbon). Follow-up investigation determined that this discordance was due to the use of two different spectrophotometers, even though both had been properly calibrated. Here we present an essential methodological refinement to correct [CO] absorbance data for small but significant instrumental differences. After applying the correction (which, notably, is not necessary for pH determinations from sulfonephthalein dye absorbances) to the shipboard absorbance data, we fit the combined-cruise data set to produce empirically updated parameters for use in processing future (and historical) [CO] absorbance measurements. With the new procedure, the average Δ[CO] offset between the two aforementioned cruises was reduced from 3.7 μmol kg to 0.7 μmol kg, which is well within the standard deviation of the measurements (1.9 μmol kg). We also introduce an empirical model to calculate in situ carbonate ion concentrations from [CO]. We demonstrate that these in situ values can be used to determine calcium carbonate saturation states that are in good agreement with those determined by more laborious and expensive conventional methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b02266 | DOI Listing |
ACS Energy Lett
January 2025
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
The global lithium-ion battery recycling capacity needs to increase by a factor of 50 in the next decade to meet the projected adoption of electric vehicles. During this expansion of recycling capacity, it is unclear which technologies are most appropriate to reduce costs and environmental impacts. Here, we describe the current and future recycling capacity situation and summarize methods for quantifying costs and environmental impacts of battery recycling methods with a focus on cathode active materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China.
The NASICON-type NaV(PO) (NVP) is recognized as a potential cathode material for Na-ion batteries (SIBs). Nevertheless, its inherent small electronic conductivity induces limited cycling stability and rate performance. Carbon coating, particularly N-doped carbon, has been identified as an effective strategy to address these challenges.
View Article and Find Full Text PDFJ Chin Med Assoc
January 2025
Department of Heavy Particles and Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
Background: Unlike conventional photon radiotherapy, particle therapy has the advantage of dose distribution. Carbon-ion radiotherapy is also advantageous in terms of biological effectiveness and other radiobiological aspects. These benefits lead to a higher response probability for previously known radioresistant tumor types.
View Article and Find Full Text PDFEnviron Technol
January 2025
Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa.
An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.
View Article and Find Full Text PDFSmall Methods
January 2025
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543, Republic of Korea.
The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!