Purpose: An MR-only postimplant dosimetry workflow for low dose rate (LDR) brachytherapy could reduce patient burden, improve accuracy, and improve cost efficiency. However, localization of brachytherapy seeds on MRI scans remains a major challenge for this type of workflow. In this study, we propose and validate an MR-only seed localization method and identify remaining challenges.
Methods And Materials: The localization method was based on template matching of simulations of complex-valued imaging artifacts around metal brachytherapy seeds. The method was applied to MRI scans of 25 prostate cancer patients who underwent LDR brachytherapy and for whom postimplant dosimetry was performed after 4 weeks. The seed locations found with the MR-only method were validated against the seed locations found on CT. The circumstances in which detection errors were made were classified to gain an insight in the nature of the errors.
Results: A total of 1490 of 1557 (96%) seeds were correctly detected, while 67 false-positive errors were made. The correctly detected seed locations had a high spatial accuracy with an average error of 0.8 mm compared with CT. A majority of the false positives occurred near other seeds. Most false negatives were found in either stranded configurations without spacers or near other seeds.
Conclusions: The low detection error rate and high localization accuracy obtained by the complex-valued template matching approach are promising for future clinical application of MR-only dosimetry. The most important remaining challenge is robustness with regard to configurations of multiple seeds in close vicinity, such as in strands of seeds without spacers. This issue could potentially be resolved by simulating specific configurations of multiple seeds or by constraining the treatment planning to avoid these configurations, which could make the proposed method competitive with CT-based seed localization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.12505 | DOI Listing |
Plants (Basel)
January 2025
Laboratory of Cell Biosystems, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria.
This study presents a comprehensive phyto- and histochemical analysis of three species: L., the Balkan endemic Guss., and the Bulgarian endemic Delip.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, National-Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Mushroom, Fuzhou 350011, China.
Spawn aging poses a substantial challenge to the industry. This study focuses on the role of mitochondrial dysfunction in the aging process of spawn. We conducted a comprehensive comparative transcriptome analysis to elucidate the molecular mechanisms underlying spawn aging.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
Late embryogenesis abundant (LEA) proteins are a class of proteins associated with osmotic regulation and plant tolerance to abiotic stress. However, studies on the gene family in the alpine cold-tolerant herb are still limited, and the phylogenetic evolution and biological functions of its family members remain unclear. In this study, we conducted genome-wide identification, phylogenetic evolution, and abiotic stress response analyses of family genes in species, alpine cold-tolerant medicinal herbs in the Qinghai-Tibet Plateau and adjacent regions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China.
Soybean is an important and versatile crop worldwide. Enhancing soybean architecture offers a potential method to increase yield. Plant-specific transcription factors play a crucial, yet often unnoticed, role in regulating plant growth and development.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650204, China.
Drought stress constitutes a major challenge to wheat production. Melatonin plays a vital role in plants' resistance to drought stress. Nevertheless, the influence of melatonin seed coating on the drought resistance ability of wheat remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!