Recent clinical studies have revealed the treatment of diabetic patients with sodium glucose co-transporter2 (SGLT2) inhibitors to reduce the incidence of cardiovascular events. Using nicotinamide and streptozotocin (NA/STZ) -treated ApoE KO mice, we investigated the effects of short-term (seven days) treatment with the SGLT2 inhibitor luseogliflozin on mRNA levels related to atherosclerosis in the aorta, as well as examining the long-term (six months) effects on atherosclerosis development. Eight-week-old ApoE KO mice were treated with NA/STZ to induce diabetes mellitus, and then divided into two groups, either untreated, or treated with luseogliflozin. Seven days after the initiation of luseogliflozin administration, atherosclerosis-related mRNA levels in the aorta were compared among four groups; i.e., wild type C57/BL6J, native ApoE KO, and NA/STZ-treated ApoE KO mice, with or without luseogliflozin. Short-term luseogliflozin treatment normalized the expression of inflammation-related genes such as F4/80, TNFα, IL-1β, IL-6, ICAM-1, PECAM-1, MMP2 and MMP9 in the NA/STZ-treated ApoE KO mice, which showed marked elevations as compared with untreated ApoE KO mice. In contrast, lipid metabolism-related genes were generally unaffected by luseogliflozin treatment. Furthermore, after six-month treatment with luseogliflozin, in contrast to the severe and widely distributed atherosclerotic changes in the aortas of NA/STZ-treated ApoE KO mice, luseogliflozin treatment markedly attenuated the progression of atherosclerosis, without affecting serum lipid parameters such as high density lipoprotein, low density lipoprotein and triglyceride levels. Given that luseogliflozin normalized the aortic mRNA levels of inflammation-related, but not lipid-related, genes soon after the initiation of treatment, it is not unreasonable to speculate that the anti-atherosclerotic effect of this SGLT2 inhibitor emerges rapidly, possibly via the prevention of inflammation rather than of hyperlipidemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578094 | PMC |
http://dx.doi.org/10.3390/ijms18081704 | DOI Listing |
JACC Basic Transl Sci
December 2024
Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
We describe a previously uncharacterized ATP-binding cassette A1 super enhancer RNA (ABCA1-seRNA)-mediated cholesterol efflux. In addition, it promoted macrophage inflammatory cytokine release, and was causally correlated with coronary artery disease severity. Mechanistically, ABCA1-seRNA upregulated cholesterol efflux by interacting with mediator complex subunit 23 and recruiting retinoid X receptor-alpha and liver X receptor-alpha to promote ABCA1 transcription in a manner.
View Article and Find Full Text PDFCurr Mol Pharmacol
January 2025
Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
Background And Aims: Atherosclerosis is a chronic cardiovascular disease which is regarded as one of the most common causes of death in the elderly. Recent evidence has shown that atherosclerotic patients can benefit by targeting interleukin-1 beta (IL-1β). Aloperine (ALO) is an alkaloid which is mainly isolated from L.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
College of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang Medical University, Urumqi, 830063, China.
The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
Adv Sci (Weinh)
January 2025
Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.
Large-scale studies indicate a strong relationship between the gut microbiome, type 2 diabetes mellitus (T2DM), and atherosclerotic cardiovascular disease (ASCVD). Here, a higher abundance of the type III secretion system (T3SS) virulence factors of Enterobacteriaceae/Escherichia-Shigella in patients with T2DM-related-ASCVD, which correlates with their atherosclerotic stenosis is reported. Overexpression of T3SS via Citrobacter rodentium (CR) infection in Apoe-/- T2DM mice exacerbated atherosclerotic lesion formation and increased gut permeability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!