Noonan syndrome (NS) is an autosomal dominant disorder characterized by distinctive facial features, short neck, short stature, congenital heart defects, pectus deformities, and variable developmental delays. NS is genetically heterogeneous as pathogenic variants in several genes involved in the Ras/mitogen-activated protein kinase pathway have been associated with a NS phenotype. Overall, 50% of patients harbor pathogenic variants in PTPN11, whereas 3-17% of patients have variants in RAF1. We present two premature neonates with progressive biventricular hypertrophy found to have RAF1 variants in the CR2 domain. Molecular testing in patient 1 revealed a missense variant of a highly conserved residue c.782 C>G (p.P261R). This variant has been reported once with fatal outcome. Patient 2 also had a missense variant in a highly conserved neighboring residue c.770 C>T (p.S257L). This variant has been previously reported, most recently associated with the development of pulmonary arterial hypertension. Both our patients had prenatal findings of polyhydramnios, short long bones, hydrops fetalis, and cardiac anomalies with progressive biventricular hypertrophic cardiomyopathy. Both patients had a lethal outcome. Our findings further support the pathogenicity and lethality of p.P261R, and the need to monitor for pulmonary arterial hypertension in p.S257L. In addition, the second patient was presented with progressive hydrocephalus due to aqueductal stenosis. This could be related to the NS phenotype. More cases with this association are needed to confirm this finding.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MCD.0000000000000194DOI Listing

Publication Analysis

Top Keywords

raf1 variants
8
biventricular hypertrophic
8
hypertrophic cardiomyopathy
8
pathogenic variants
8
progressive biventricular
8
missense variant
8
variant highly
8
highly conserved
8
variant reported
8
pulmonary arterial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!