CNT-decellularized cartilage hybrids for tissue engineering applications.

Biomed Mater

Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

Published: October 2017

An optimized scaffold with adaptable architectural and biochemical properties is a goal for articular cartilage (AC) repair. A mechanically enhanced decellularized AC can be an optimistic ECM-derived scaffold. In this study, reinforced decellularized bovine AC was evaluated as a potential scaffold for cartilage repair applications. Individually dispersed single-wall carbon nanotubes (CNTs) were incorporated into chemically decellularized bovine AC samples. The mechanical and thermodynamic properties as well as the biocompatibility of the samples were evaluated by a compressive test, SEM, AFM, FTIR, TGA, DSC and a resazurin test. The Young's modulus of the CNT-incorporated samples (0.67 ± 0.09 MPa) was significantly higher compared to the decellularized ones (0.43 ± 0.06 MPa) (P = 0.001). A higher cell proliferation in the resazurin reduction test after 7 days in culture with human-adipose-derived stem cells (hADSCs) (P < 0.001) was reconfirmed with SEM. FTIR, TGA and DSC confirmed the higher stability when CNT was incorporated into the decellularized AC samples. Our findings indicate that the incorporation of CNTs can substantially enhance the mechanical properties of decellularized AC while retaining its biocompatibility, hence suggesting CNT-incorporated decellularized AC as potential scaffolds for cartilage tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/aa8435DOI Listing

Publication Analysis

Top Keywords

cartilage repair
8
decellularized bovine
8
cnt-decellularized cartilage
4
cartilage hybrids
4
hybrids tissue
4
tissue engineering
4
engineering applications
4
applications optimized
4
optimized scaffold
4
scaffold adaptable
4

Similar Publications

Anatomic Distal Biceps Tendon Repair With All-Suture Cortical Buttons.

Arthrosc Tech

December 2024

Department of Orthopaedic Surgery, University of California Irvine, Orange, California, U.S.A.

Acute, traumatic distal biceps tendon ruptures are a common injury in the middle-aged athletic male population, with direct anatomic surgical repair being the most effective technique to restore maximal strength. Multiple techniques for distal biceps tendon repair have been described, including single- or dual-incision approaches and tendon fixation with cortical buttons, interference screws, suture anchors, and transosseous sutures. In this Technical Note, we demonstrate an anatomic distal biceps tendon repair technique with a single-incision approach using 2 all-suture cortical buttons.

View Article and Find Full Text PDF

Healthcare economic burden of unresolved slipping rib syndrome.

JTCVS Open

December 2024

Department of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown, WVa.

Objective: To evaluate the healthcare costs associated with unresolved slipping rib syndrome (SRS).

Methods: Data pertaining to patients who underwent operative repair for SRS at our academic institution were analyzed retrospectively. Duration of symptoms, previous management efforts, number of healthcare provider consultations, imaging studies, adjunctive surgical and pain management procedures performed to treat the symptoms, and prior unsuccessful SRS operations were catalogued.

View Article and Find Full Text PDF

Dynamic biomechanical effects of medial meniscus tears on the knee joint: a finite element analysis.

J Orthop Surg Res

January 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.

Background: Meniscus tears can change the biomechanical environment of the knee joint and might accelerate the development of osteoarthritis. The aim of this study was to investigate the dynamic biomechanical effects of different medial meniscus tear positions and tear gaps on the knee during walking.

Methods: Seven finite element models of the knee joint were constructed, including the intact medial meniscus (IMM), radial stable tears in the anterior, middle, and posterior one-third regions of the medial meniscus (RSTA, RSTM, RSTP), and the corresponding unstable tears (RUTA, RUTM, RUTP).

View Article and Find Full Text PDF

The combination of hip arthroscopy and periacetabular osteotomy (PAO) has been proven safe and effective for addressing symptoms in patients with developmental dysplasia of the hip (DDH). As not every patient with dysplasia will require a hip arthroscopy to obtain desired clinical improvement in the setting of periacetabular osteotomy, a challenge is identifying which patients require adjacent procedures (either via arthroscopic or open) to fully treat their hip pathology. Even though labral repair is the most reported arthroscopic procedure in cases of hip dysplasia, I would suggest that labral treatment is the least likely helpful component of hip arthroscopy in these cases.

View Article and Find Full Text PDF

In situ swelling of low-friction, high load-bearing self-bending bilayer hydrogels inspired by articular cartilage.

Biomed Mater

January 2025

School of Advanced Manufacturing, Nanchang University - Qianhu Campus, Nanchang, Jiangxi, China, Nanchang, --- Select One ---, 330031, CHINA.

The articular cartilage is characterized by its gradient hierarchical structure, which exhibits excellent lubrication and robust load-bearing properties. However, its inherent difficulty in self-repair after damage presents numerous formidable challenges for cartilage repair. Inspired by the unique structure of articular cartilage, a biomimetic bilayer hydrogel composed of PAM (polyacrylamide) and PAM/SA (sodium alginate) is prepared using a two-step in-situ swelling method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!