Large-Scale Atmospheric Dispersal Simulations Identify Likely Airborne Incursion Routes of Wheat Stem Rust Into Ethiopia.

Phytopathology

First and fifth author: Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, U.K.; second and third author: Atmospheric Dispersion and Air Quality (ADAQ), Met Office, Exeter, EX1 3PB, U.K.; and fourth author: International Maize and Wheat Improvement Center (CIMMYT), PO Box 5689, Addis Ababa, Ethiopia.

Published: October 2017

In recent years, severe wheat stem rust epidemics hit Ethiopia, sub-Saharan Africa's largest wheat-producing country. These were caused by race TKTTF (Digalu race) of the pathogen Puccinia graminis f. sp. tritici, which, in Ethiopia, was first detected at the beginning of August 2012. We use the incursion of this new pathogen race as a case study to determine likely airborne origins of fungal spores on regional and continental scales by means of a Lagrangian particle dispersion model (LPDM). Two different techniques, LPDM simulations forward and backward in time, are compared. The effects of release altitudes in time-backward simulations and P. graminis f. sp. tritici urediniospore viability functions in time-forward simulations are analyzed. Results suggest Yemen as the most likely origin but, also, point to other possible sources in the Middle East and the East African Rift Valley. This is plausible in light of available field surveys and phylogenetic data on TKTTF isolates from Ethiopia and other countries. Independent of the case involving TKTTF, we assess long-term dispersal trends (>10 years) to obtain quantitative estimates of the risk of exotic P. graminis f. sp. tritici spore transport (of any race) into Ethiopia for different 'what-if' scenarios of disease outbreaks in potential source countries in different months of the wheat season.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-01-17-0035-FIDOI Listing

Publication Analysis

Top Keywords

graminis tritici
12
wheat stem
8
stem rust
8
ethiopia
5
large-scale atmospheric
4
atmospheric dispersal
4
simulations
4
dispersal simulations
4
simulations identify
4
identify airborne
4

Similar Publications

Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.

View Article and Find Full Text PDF

The global wheat production faces significant challenges due to major rust-causing fungi, namely f. sp. , , and f.

View Article and Find Full Text PDF

The use of biological plant protection products is promising for agriculture. In particular, chitosan-based biopesticides have become widespread for stimulating growth and protecting plants from a wide range of pathogens. Novochizol is a product obtained by intramolecular cross-linking of linear chitosan molecules and has a globular shape, which provides it with a number of advantages over chitosan.

View Article and Find Full Text PDF

Molecular identification of a Pm4 allele conferring powdery mildew resistance in durum wheat DR88.

BMC Plant Biol

December 2024

Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.

Article Synopsis
  • Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a highly destructive disease impacting wheat, particularly affecting common wheat, but durum wheat serves as a key resource for enhancement efforts.* -
  • The study identified a durum wheat variety (DR88) with strong resistance to powdery mildew, localizing the dominant resistance gene, PmDR88, to a specific region on chromosome arm 2AL and confirming its association with the Pm4 locus through extensive genotyping.* -
  • Despite PmDR88 sharing amino acid sequences with the Pm4d allele, it has distinct expression patterns; two complementary DNA markers were developed for efficient marker-assisted selection to integrate this
View Article and Find Full Text PDF

A newly identified photosystem II Subunit P gene in Triticeae species negatively regulates wheat powdery mildew resistance.

Front Plant Sci

November 2024

College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.

The photosystem II (PSII) Subunit P (PsbP) protein is a component of its oxygen-evolving complex, which can oxidize water to produce oxygen using light energy and is critical to the core components and stability of PSII. Using the whole-genome information, the genes of 10 plant species were comprehensively identified. The expression patterns of wheat s under f.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!