Human mesenchymal stem cells (hMSCs), characterized by rapid in vitro expandability and multi-differentiation potential, have been widely used in the clinical field of tissue engineering. Recent studies have shown that various signaling networks are involved in the growth and differentiation of hMSCs. Although Wnts and their downstream signaling components have been implicated in the regulation of hMSCs, the role of Wnt signaling in hMSC self-renewal is still controversial. Here, it was observed that activation of endogenous canonical Wnt signaling with LiCl, which decreased β-catenin phosphorylation, leads to a decrease in hMSC proliferation. The fact that this growth arrest is not linked to apoptosis was verified by annexin V-FITC/propidium iodide assay. It was associated with sealing off of the cells in the G1 phase of the cell cycle accompanied by changes in expression of cell cycle-associated genes such as cyclin A and D. In addition, activation of Wnt signaling during hMSC proliferation seemed to reduce their clonogenic potential. On the contrary, Wnt signaling activation during hMSC proliferation had little effect on the osteogenic differentiation capability of cells. These findings show that canonical Wnt signaling is a critical regulator of hMSC proliferation and clonogenicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.26326 | DOI Listing |
Sci Rep
January 2025
School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature.
View Article and Find Full Text PDFESMO Open
January 2025
Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:
Background: Disruption of cyclin D-dependent kinases (CDKs), particularly CDK4/6, drives cancer cell proliferation via abnormal protein phosphorylation. This open-label, single-arm, phase Ib/II trial evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, combined with paclitaxel against CDK4/6-activated tumors.
Patients And Methods: Patients with locally advanced or metastatic solid tumors with CDK4/6 pathway aberrations were included.
Cell Signal
January 2025
Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
KDELR1, a constituent of the KDEL endoplasmic reticulum protein retention receptors family, is implicated in immune responses and cancers progression. In this study, we delineate the clinicopathological significance and oncogenic role of KDELR1 in head and neck squamous cell carcinoma (HNSCC) through a comprehensive multi-omics approach. KDELR1 expression is correlated with tumor grade, tumor stage, lymph node metastasis, clinical stage and poor prognosis in HNSCC.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, West Virginia State University, Institute, WV, United States of America.
Glioblastoma multiforme (GBM), the most prevalent primary malignant brain tumor in adults, exhibits a dismal 6.9% five-year survival rate post-diagnosis. Thymoquinone (TQ), the most abundant bioactive compound in Nigella sativa, has been extensively researched for its anticancer properties across various human cancers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114.
Anti-Müllerian hormone (AMH) protects the ovarian reserve from chemotherapy, and this effect is most pronounced with Doxorubicin (DOX). However, DOX toxicity and AMH rescue mechanisms in the ovary have remained unclear. Herein, we characterize the consequences of these treatments in ovarian cell types using scRNAseq.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!